-
Previous Article
Decay estimates with sharp rates of global solutions of nonlinear systems of fluid dynamics equations
- DCDS-S Home
- This Issue
-
Next Article
Wave breaking and persistent decay of solution to a shallow water wave equation
Blow-up criteria of smooth solutions to the three-dimensional micropolar fluid equations in Besov space
1. | School of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo 454000, Henan |
2. | School of Mathematics and Information Science, Henan Polytechnic University, Henan 454000, China |
References:
[1] |
L. C. Berselli, On a regularity criterion for the solutions to 3D Navier-Stokes equations, Differential Integral Equations, 15 (2002), 1129-1137. |
[2] |
H. Bahouri, R. Danchin and J. Y. Chemin, Fourier Analysis and Nonlinear Partial Differential Equations, Springer Heidelberg Dordrecht London New York, Springer-Verlag Berlin Heidelberg, 2011.
doi: 10.1007/978-3-642-16830-7. |
[3] |
J. Bergh and J. Löfström, Inerpolation Spaces, an Introduction, Springer-Verlag, New York, 1976. |
[4] |
Q. L. Chen and C. X. Miao, Global well-posedness for the micropolar fluid system in critical Besov spaces, J. Differential Equations, 252 (2012), 2698-2724.
doi: 10.1016/j.jde.2011.09.035. |
[5] |
C. S. Cao and J. H. Wu, Two regularity criteria for the 3D MHD equations, J. Differential Equations, 248 (2010), 2263-2274.
doi: 10.1016/j.jde.2009.09.020. |
[6] |
B. Q. Dong and Z. M. Chen, Regularity criteria of weak solutions to the three-dimensional micropolar flows, J. Math. Phys., 50 (2009), 103525, 13 pp.
doi: 10.1063/1.3245862. |
[7] |
B. Q. Dong and W. Zhang, On the regularity criterion for the three-dimensional micropolar flows in Besov spaces, Nonlinear Anal., 73 (2010), 2334-2341.
doi: 10.1016/j.na.2010.06.029. |
[8] |
B. Q. Dong and Z. F. Zhang, The BKM criterion for the 3D Navier-Stokes equations via two velocity components, Nonlinear Anal., 11 (2010), 2415-2421.
doi: 10.1016/j.nonrwa.2009.07.013. |
[9] |
A. C. Eringen, Theory of micropolar fluids, J. Math. Mech., 16 (1966), 1-18. |
[10] |
D. Y. Fang and C. Y. Qian, Regularity criteria for 3D Navier-Stokes equations in Besov space, Comm.Pura Appl, 13 (2014), 585-603.
doi: 10.3934/cpaa.2014.13.585. |
[11] |
G. Galdi and S. Rionero, A note on the existence and uniqueness of solutions of the micropolar fluid equations, Int. J. Eng. Sci., 15 (1977), 105-108.
doi: 10.1016/0020-7225(77)90025-8. |
[12] |
S. Gala, On regularity criteria for the three-dimensional micropolar fluid equations in the critical Morrey-Campanato space, Nonlinear Anal., 12 (2011), 2142-2150.
doi: 10.1016/j.nonrwa.2010.12.028. |
[13] |
I. Kukavica and M. Zinae, Navier-Stokes equation with regularity in one direction, J. Math. Phys., 48 (2007), 065203, 10 pp.
doi: 10.1063/1.2395919. |
[14] |
O. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Fluids, Gorden Brech, New York, 1969. |
[15] |
P. G. Lemarié-Rieusset, Recent Developments in the Navier-Stokes Problem, Chapman & Hill/CRC, 2002.
doi: 10.1201/9781420035674. |
[16] |
P. L. Lions and Lions, Mathematical Topics in Fluid Mechanics, Oxford University Press Inc. New York, 1996. |
[17] |
G. Lukaszewicz, Micropolar Fluids, Birkhäuser, Boston, 1999.
doi: 10.1007/978-1-4612-0641-5. |
[18] |
G. Lukaszewicz, On nonstationary flows of asymmetric fluids, Rend. Accad. Naz. Sci. XL Mem. Mat. (5), 12 (1988), 83-97. |
[19] |
G. Lukaszewicz, On the existence, uniqueness and asymptotic properties for solutions of flows of asymmetric fluids, Rend. Accad. Naz. Sci. XL Mem. Mat. (5), 13 (1989), 105-120. |
[20] |
E. Ortega-Torres and M. Rojas-Medar, On the regularity for solutions of the micropolar fluid equations, Rend. Semin. Mat. Univ. Padova, 122 (2009), 27-37.
doi: 10.4171/RSMUP/122-3. |
[21] |
M. A. Rojas-Medar and J. L. Boldrini, Magneto-micropolar fluid motion: Existence of weak solutions, Rev. Mat. Complut., 11 (1998), 443-460.
doi: 10.5209/rev_REMA.1998.v11.n2.17276. |
[22] |
Z. Skalák, Criteria for the regularity of the solutions to the Navier-Stokes equations based on the velocity gradient, Nonlinear Anal., 118 (2015), 1-21.
doi: 10.1016/j.na.2015.01.011. |
[23] |
Y. X. Wang and H. J. Zhao, Logarithmically improved blow up criterion for smooths solution to the 3D Micropolar Fluid equations, J. Appl. Math., (2012), Art. ID 541203, 13 pp.
doi: 10.1016/j.nonrwa.2011.12.018. |
[24] |
N. Yamaguchi, Existence of global strong solution to the micropolar fluid system in a bounded domain, Methods Appl. Sci., 28 (2005), 1507-1526.
doi: 10.1002/mma.617. |
[25] |
B. Q. Yuan, On regularity criteria of weak solutions to the micropolar fluid equations in Lorentz space, Amer. Math. Soc., 138 (2010), 2025-2036.
doi: 10.1090/S0002-9939-10-10232-9. |
[26] |
B. Q. Yuan, Regularity of weak solutions to magneto-micropolar equations, Acta Math. Sci., 30 (2010), 1469-1480.
doi: 10.1016/S0252-9602(10)60139-7. |
[27] |
H. Zhang, Logarithmically improved regularity criterion for the 3D micropolar fluid equations, Int. J. Appl. Anal., (2014), Art. ID 386269, 6 pp.
doi: 10.1155/2014/386269. |
[28] |
Y. Zhou, A new regularity criteria for weak solutions to the Navier-Stokes equations, J. Math. Pures Appl., 84 (2005), 1496-1514.
doi: 10.1016/j.matpur.2005.07.003. |
[29] |
Y. Zhou and M. Pokorny, On the regularity of the solutions of the Navier-Stokes equations via one velocity component, Nonlinearity, 23 (2010), 1097-1107.
doi: 10.1088/0951-7715/23/5/004. |
show all references
References:
[1] |
L. C. Berselli, On a regularity criterion for the solutions to 3D Navier-Stokes equations, Differential Integral Equations, 15 (2002), 1129-1137. |
[2] |
H. Bahouri, R. Danchin and J. Y. Chemin, Fourier Analysis and Nonlinear Partial Differential Equations, Springer Heidelberg Dordrecht London New York, Springer-Verlag Berlin Heidelberg, 2011.
doi: 10.1007/978-3-642-16830-7. |
[3] |
J. Bergh and J. Löfström, Inerpolation Spaces, an Introduction, Springer-Verlag, New York, 1976. |
[4] |
Q. L. Chen and C. X. Miao, Global well-posedness for the micropolar fluid system in critical Besov spaces, J. Differential Equations, 252 (2012), 2698-2724.
doi: 10.1016/j.jde.2011.09.035. |
[5] |
C. S. Cao and J. H. Wu, Two regularity criteria for the 3D MHD equations, J. Differential Equations, 248 (2010), 2263-2274.
doi: 10.1016/j.jde.2009.09.020. |
[6] |
B. Q. Dong and Z. M. Chen, Regularity criteria of weak solutions to the three-dimensional micropolar flows, J. Math. Phys., 50 (2009), 103525, 13 pp.
doi: 10.1063/1.3245862. |
[7] |
B. Q. Dong and W. Zhang, On the regularity criterion for the three-dimensional micropolar flows in Besov spaces, Nonlinear Anal., 73 (2010), 2334-2341.
doi: 10.1016/j.na.2010.06.029. |
[8] |
B. Q. Dong and Z. F. Zhang, The BKM criterion for the 3D Navier-Stokes equations via two velocity components, Nonlinear Anal., 11 (2010), 2415-2421.
doi: 10.1016/j.nonrwa.2009.07.013. |
[9] |
A. C. Eringen, Theory of micropolar fluids, J. Math. Mech., 16 (1966), 1-18. |
[10] |
D. Y. Fang and C. Y. Qian, Regularity criteria for 3D Navier-Stokes equations in Besov space, Comm.Pura Appl, 13 (2014), 585-603.
doi: 10.3934/cpaa.2014.13.585. |
[11] |
G. Galdi and S. Rionero, A note on the existence and uniqueness of solutions of the micropolar fluid equations, Int. J. Eng. Sci., 15 (1977), 105-108.
doi: 10.1016/0020-7225(77)90025-8. |
[12] |
S. Gala, On regularity criteria for the three-dimensional micropolar fluid equations in the critical Morrey-Campanato space, Nonlinear Anal., 12 (2011), 2142-2150.
doi: 10.1016/j.nonrwa.2010.12.028. |
[13] |
I. Kukavica and M. Zinae, Navier-Stokes equation with regularity in one direction, J. Math. Phys., 48 (2007), 065203, 10 pp.
doi: 10.1063/1.2395919. |
[14] |
O. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Fluids, Gorden Brech, New York, 1969. |
[15] |
P. G. Lemarié-Rieusset, Recent Developments in the Navier-Stokes Problem, Chapman & Hill/CRC, 2002.
doi: 10.1201/9781420035674. |
[16] |
P. L. Lions and Lions, Mathematical Topics in Fluid Mechanics, Oxford University Press Inc. New York, 1996. |
[17] |
G. Lukaszewicz, Micropolar Fluids, Birkhäuser, Boston, 1999.
doi: 10.1007/978-1-4612-0641-5. |
[18] |
G. Lukaszewicz, On nonstationary flows of asymmetric fluids, Rend. Accad. Naz. Sci. XL Mem. Mat. (5), 12 (1988), 83-97. |
[19] |
G. Lukaszewicz, On the existence, uniqueness and asymptotic properties for solutions of flows of asymmetric fluids, Rend. Accad. Naz. Sci. XL Mem. Mat. (5), 13 (1989), 105-120. |
[20] |
E. Ortega-Torres and M. Rojas-Medar, On the regularity for solutions of the micropolar fluid equations, Rend. Semin. Mat. Univ. Padova, 122 (2009), 27-37.
doi: 10.4171/RSMUP/122-3. |
[21] |
M. A. Rojas-Medar and J. L. Boldrini, Magneto-micropolar fluid motion: Existence of weak solutions, Rev. Mat. Complut., 11 (1998), 443-460.
doi: 10.5209/rev_REMA.1998.v11.n2.17276. |
[22] |
Z. Skalák, Criteria for the regularity of the solutions to the Navier-Stokes equations based on the velocity gradient, Nonlinear Anal., 118 (2015), 1-21.
doi: 10.1016/j.na.2015.01.011. |
[23] |
Y. X. Wang and H. J. Zhao, Logarithmically improved blow up criterion for smooths solution to the 3D Micropolar Fluid equations, J. Appl. Math., (2012), Art. ID 541203, 13 pp.
doi: 10.1016/j.nonrwa.2011.12.018. |
[24] |
N. Yamaguchi, Existence of global strong solution to the micropolar fluid system in a bounded domain, Methods Appl. Sci., 28 (2005), 1507-1526.
doi: 10.1002/mma.617. |
[25] |
B. Q. Yuan, On regularity criteria of weak solutions to the micropolar fluid equations in Lorentz space, Amer. Math. Soc., 138 (2010), 2025-2036.
doi: 10.1090/S0002-9939-10-10232-9. |
[26] |
B. Q. Yuan, Regularity of weak solutions to magneto-micropolar equations, Acta Math. Sci., 30 (2010), 1469-1480.
doi: 10.1016/S0252-9602(10)60139-7. |
[27] |
H. Zhang, Logarithmically improved regularity criterion for the 3D micropolar fluid equations, Int. J. Appl. Anal., (2014), Art. ID 386269, 6 pp.
doi: 10.1155/2014/386269. |
[28] |
Y. Zhou, A new regularity criteria for weak solutions to the Navier-Stokes equations, J. Math. Pures Appl., 84 (2005), 1496-1514.
doi: 10.1016/j.matpur.2005.07.003. |
[29] |
Y. Zhou and M. Pokorny, On the regularity of the solutions of the Navier-Stokes equations via one velocity component, Nonlinearity, 23 (2010), 1097-1107.
doi: 10.1088/0951-7715/23/5/004. |
[1] |
Jinbo Geng, Xiaochun Chen, Sadek Gala. On regularity criteria for the 3D magneto-micropolar fluid equations in the critical Morrey-Campanato space. Communications on Pure and Applied Analysis, 2011, 10 (2) : 583-592. doi: 10.3934/cpaa.2011.10.583 |
[2] |
Jens Lorenz, Wilberclay G. Melo, Suelen C. P. de Souza. Regularity criteria for weak solutions of the Magneto-micropolar equations. Electronic Research Archive, 2021, 29 (1) : 1625-1639. doi: 10.3934/era.2020083 |
[3] |
Xin Zhong. A blow-up criterion of strong solutions to two-dimensional nonhomogeneous micropolar fluid equations with vacuum. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4603-4615. doi: 10.3934/dcdsb.2020115 |
[4] |
Van Duong Dinh. Blow-up criteria for linearly damped nonlinear Schrödinger equations. Evolution Equations and Control Theory, 2021, 10 (3) : 599-617. doi: 10.3934/eect.2020082 |
[5] |
Vural Bayrak, Emil Novruzov, Ibrahim Ozkol. Local-in-space blow-up criteria for two-component nonlinear dispersive wave system. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 6023-6037. doi: 10.3934/dcds.2019263 |
[6] |
Lei Zhang, Bin Liu. Well-posedness, blow-up criteria and gevrey regularity for a rotation-two-component camassa-holm system. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2655-2685. doi: 10.3934/dcds.2018112 |
[7] |
Wenjing Zhao. Local well-posedness and blow-up criteria of magneto-viscoelastic flows. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4637-4655. doi: 10.3934/dcds.2018203 |
[8] |
Alejandro Sarria. Global estimates and blow-up criteria for the generalized Hunter-Saxton system. Discrete and Continuous Dynamical Systems - B, 2015, 20 (2) : 641-673. doi: 10.3934/dcdsb.2015.20.641 |
[9] |
Jihoon Lee. Scaling invariant blow-up criteria for simplified versions of Ericksen-Leslie system. Discrete and Continuous Dynamical Systems - S, 2015, 8 (2) : 381-388. doi: 10.3934/dcdss.2015.8.381 |
[10] |
Yan Jia, Xingwei Zhang, Bo-Qing Dong. Remarks on the blow-up criterion for smooth solutions of the Boussinesq equations with zero diffusion. Communications on Pure and Applied Analysis, 2013, 12 (2) : 923-937. doi: 10.3934/cpaa.2013.12.923 |
[11] |
Hua Qiu. Regularity criteria of smooth solution to the incompressible viscoelastic flow. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2873-2888. doi: 10.3934/cpaa.2013.12.2873 |
[12] |
Yi-hang Hao, Xian-Gao Liu. The existence and blow-up criterion of liquid crystals system in critical Besov space. Communications on Pure and Applied Analysis, 2014, 13 (1) : 225-236. doi: 10.3934/cpaa.2014.13.225 |
[13] |
Yukihiro Seki. A remark on blow-up at space infinity. Conference Publications, 2009, 2009 (Special) : 691-696. doi: 10.3934/proc.2009.2009.691 |
[14] |
Huyuan Chen, Hichem Hajaiej, Ying Wang. Boundary blow-up solutions to fractional elliptic equations in a measure framework. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 1881-1903. doi: 10.3934/dcds.2016.36.1881 |
[15] |
Zhifu Xie. General uniqueness results and examples for blow-up solutions of elliptic equations. Conference Publications, 2009, 2009 (Special) : 828-837. doi: 10.3934/proc.2009.2009.828 |
[16] |
Jacek Banasiak. Blow-up of solutions to some coagulation and fragmentation equations with growth. Conference Publications, 2011, 2011 (Special) : 126-134. doi: 10.3934/proc.2011.2011.126 |
[17] |
Antonio Vitolo, Maria E. Amendola, Giulio Galise. On the uniqueness of blow-up solutions of fully nonlinear elliptic equations. Conference Publications, 2013, 2013 (special) : 771-780. doi: 10.3934/proc.2013.2013.771 |
[18] |
Zhijun Zhang, Ling Mi. Blow-up rates of large solutions for semilinear elliptic equations. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1733-1745. doi: 10.3934/cpaa.2011.10.1733 |
[19] |
Marius Ghergu, Vicenţiu Rădulescu. Nonradial blow-up solutions of sublinear elliptic equations with gradient term. Communications on Pure and Applied Analysis, 2004, 3 (3) : 465-474. doi: 10.3934/cpaa.2004.3.465 |
[20] |
Jens Lorenz, Wilberclay G. Melo, Natã Firmino Rocha. The Magneto–Hydrodynamic equations: Local theory and blow-up of solutions. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3819-3841. doi: 10.3934/dcdsb.2018332 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]