February  2017, 10(1): 101-117. doi: 10.3934/dcdss.2017006

Discrete spin systems on random lattices at the bulk scaling

Zentrum Mathematik -M7, Technische Universität München, Boltzmannstrasse 3, 85748 Garching, Germany

Received  March 2015 Revised  June 2015 Published  December 2016

We study by Γ-convergence the stochastic homogenization of discrete energies on a class of random lattices as the lattice spacing vanishes. We consider general bounded spin systems at the bulk scaling and prove a homogenization result for stationary lattices. In the ergodic case we obtain a deterministic limit.

Citation: Marco Cicalese, Matthias Ruf. Discrete spin systems on random lattices at the bulk scaling. Discrete and Continuous Dynamical Systems - S, 2017, 10 (1) : 101-117. doi: 10.3934/dcdss.2017006
References:
[1]

M. A. Akcoglu and U. Krengel, Ergodic theorems for superadditive processes, J. Reine Ang. Math., 323 (1981), 53-67.  doi: 10.1515/crll.1981.323.53.

[2]

R. Alicandro and M. Cicalese, A general integral representation result for continuum limits of discrete energies with superlinear growth, SIAM J. Math. Anal., 36 (2004), 1-37.  doi: 10.1137/S0036141003426471.

[3]

R. Alicandro, A. Braides and M. Cicalese, book in preparation.

[4]

R. AlicandroA. Braides and M. Cicalese, Continuum limits of discrete thin films with superlinear growth densities, Calc. Var. and PDE, 33 (2008), 267-297.  doi: 10.1007/s00526-008-0159-4.

[5]

R. AlicandroM. Cicalese and A. Gloria, Variational description of bulk energies for bounded and unbounded spin systems, Nonlinearity, 21 (2008), 1881-1910.  doi: 10.1088/0951-7715/21/8/008.

[6]

R. AlicandroM. Cicalese and A. Gloria, Integral representation results for energies defined on stochastic lattices and application to nonlinear elasticity, Arch. Rat. Mech. Anal., 200 (2011), 881-943.  doi: 10.1007/s00205-010-0378-7.

[7]

R. AlicandroM. Cicalese and M. Ruf, Domain formation in magnetic polymer composites: An approach via stochastic homogenization, Arch. Rat. Mech. Anal., 218 (2015), 945-984.  doi: 10.1007/s00205-015-0873-y.

[8]

R. Alicandro and M. S. Gelli, Local and non local continuum limits of Ising type energies for spin systems, SIAM J. Math. Anal., 48 (2016), 895-931.  doi: 10.1137/140997373.

[9]

A. Braides, Γ-convergence for Beginners, Oxford Lecture Series in Mathematics and its Applications 22, Oxford University Press, Oxford, 2002. doi: 10.1093/acprof:oso/9780198507840.001.0001.

[10]

A. Braides and M. Cicalese, Interfaces, modulated phases and textures in lattice systems, Arch. Rat. Mech. Anal., (2016), 1-41.  doi: 10.1007/s00205-016-1050-7.

[11]

A. BraidesM. Cicalese and F. Solombrino, Q-tensor continuum energies as limits of head-to-tail symmetric spin systems, SIAM J. Math. Anal., 47 (2015), 2832-2867.  doi: 10.1137/130941341.

[12]

A. Braides and A. Defranceschi, Homogenization of Multiple Integrals, Oxford Lecture Series in Mathematics and its Applications 12, Oxford University Press, New York, 1998.

[13]

A. Braides and L. Truskinovsky, Asymptotic expansions by Γ-convergence, Contin. Mech. Thermodyn., 20 (2008), 21-62.  doi: 10.1007/s00161-008-0072-2.

[14]

G. Buttazzo, Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations (Pitman Research Notes in Mathematics Ser. 207), 1989.

[15]

M. CicaleseM. Ruf and F. Solombrino, Chirality transitions in frustrated S2-valued spin systems, Math. Models Methods Appl. Sci., 26 (2016), 1481-1529.  doi: 10.1142/S0218202516500366.

[16]

M. Cicalese and F. Solombrino, Frustrated ferromagnetic spin chains: A variational approach to chirality transitions, Journal of Nonlinear Science, 25 (2015), 291-313.  doi: 10.1007/s00332-015-9230-4.

[17]

G. Dal Maso and L. Modica, Integral functionals determined by their minima, Rend. Semin. Mat. Univ. Padova, 76 (1986), 255-267. 

[18]

G. Dal Maso and L. Modica, Nonlinear stochastic homogenization and ergodic theory, J. Reine. Ang. Math., 368 (1986), 28-42. 

[19]

I. Fonseca and G. Leoni, Modern Methods in the Calculus of Variations: Lp Spaces Springer, New York, 2007.

[20]

D. GaleV. Klee and R. T. Rockafellar, Convex functions on convex polytopes, Proc. Amer. Math. Soc., 19 (1968), 867-873.  doi: 10.1090/S0002-9939-1968-0230219-6.

show all references

References:
[1]

M. A. Akcoglu and U. Krengel, Ergodic theorems for superadditive processes, J. Reine Ang. Math., 323 (1981), 53-67.  doi: 10.1515/crll.1981.323.53.

[2]

R. Alicandro and M. Cicalese, A general integral representation result for continuum limits of discrete energies with superlinear growth, SIAM J. Math. Anal., 36 (2004), 1-37.  doi: 10.1137/S0036141003426471.

[3]

R. Alicandro, A. Braides and M. Cicalese, book in preparation.

[4]

R. AlicandroA. Braides and M. Cicalese, Continuum limits of discrete thin films with superlinear growth densities, Calc. Var. and PDE, 33 (2008), 267-297.  doi: 10.1007/s00526-008-0159-4.

[5]

R. AlicandroM. Cicalese and A. Gloria, Variational description of bulk energies for bounded and unbounded spin systems, Nonlinearity, 21 (2008), 1881-1910.  doi: 10.1088/0951-7715/21/8/008.

[6]

R. AlicandroM. Cicalese and A. Gloria, Integral representation results for energies defined on stochastic lattices and application to nonlinear elasticity, Arch. Rat. Mech. Anal., 200 (2011), 881-943.  doi: 10.1007/s00205-010-0378-7.

[7]

R. AlicandroM. Cicalese and M. Ruf, Domain formation in magnetic polymer composites: An approach via stochastic homogenization, Arch. Rat. Mech. Anal., 218 (2015), 945-984.  doi: 10.1007/s00205-015-0873-y.

[8]

R. Alicandro and M. S. Gelli, Local and non local continuum limits of Ising type energies for spin systems, SIAM J. Math. Anal., 48 (2016), 895-931.  doi: 10.1137/140997373.

[9]

A. Braides, Γ-convergence for Beginners, Oxford Lecture Series in Mathematics and its Applications 22, Oxford University Press, Oxford, 2002. doi: 10.1093/acprof:oso/9780198507840.001.0001.

[10]

A. Braides and M. Cicalese, Interfaces, modulated phases and textures in lattice systems, Arch. Rat. Mech. Anal., (2016), 1-41.  doi: 10.1007/s00205-016-1050-7.

[11]

A. BraidesM. Cicalese and F. Solombrino, Q-tensor continuum energies as limits of head-to-tail symmetric spin systems, SIAM J. Math. Anal., 47 (2015), 2832-2867.  doi: 10.1137/130941341.

[12]

A. Braides and A. Defranceschi, Homogenization of Multiple Integrals, Oxford Lecture Series in Mathematics and its Applications 12, Oxford University Press, New York, 1998.

[13]

A. Braides and L. Truskinovsky, Asymptotic expansions by Γ-convergence, Contin. Mech. Thermodyn., 20 (2008), 21-62.  doi: 10.1007/s00161-008-0072-2.

[14]

G. Buttazzo, Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations (Pitman Research Notes in Mathematics Ser. 207), 1989.

[15]

M. CicaleseM. Ruf and F. Solombrino, Chirality transitions in frustrated S2-valued spin systems, Math. Models Methods Appl. Sci., 26 (2016), 1481-1529.  doi: 10.1142/S0218202516500366.

[16]

M. Cicalese and F. Solombrino, Frustrated ferromagnetic spin chains: A variational approach to chirality transitions, Journal of Nonlinear Science, 25 (2015), 291-313.  doi: 10.1007/s00332-015-9230-4.

[17]

G. Dal Maso and L. Modica, Integral functionals determined by their minima, Rend. Semin. Mat. Univ. Padova, 76 (1986), 255-267. 

[18]

G. Dal Maso and L. Modica, Nonlinear stochastic homogenization and ergodic theory, J. Reine. Ang. Math., 368 (1986), 28-42. 

[19]

I. Fonseca and G. Leoni, Modern Methods in the Calculus of Variations: Lp Spaces Springer, New York, 2007.

[20]

D. GaleV. Klee and R. T. Rockafellar, Convex functions on convex polytopes, Proc. Amer. Math. Soc., 19 (1968), 867-873.  doi: 10.1090/S0002-9939-1968-0230219-6.

[1]

Jacky Cresson, Fernando Jiménez, Sina Ober-Blöbaum. Continuous and discrete Noether's fractional conserved quantities for restricted calculus of variations. Journal of Geometric Mechanics, 2022, 14 (1) : 57-89. doi: 10.3934/jgm.2021012

[2]

Viviana Alejandra Díaz, David Martín de Diego. Generalized variational calculus for continuous and discrete mechanical systems. Journal of Geometric Mechanics, 2018, 10 (4) : 373-410. doi: 10.3934/jgm.2018014

[3]

Bernard Dacorogna, Giovanni Pisante, Ana Margarida Ribeiro. On non quasiconvex problems of the calculus of variations. Discrete and Continuous Dynamical Systems, 2005, 13 (4) : 961-983. doi: 10.3934/dcds.2005.13.961

[4]

Daniel Faraco, Jan Kristensen. Compactness versus regularity in the calculus of variations. Discrete and Continuous Dynamical Systems - B, 2012, 17 (2) : 473-485. doi: 10.3934/dcdsb.2012.17.473

[5]

Nikos Katzourakis. Nonuniqueness in vector-valued calculus of variations in $L^\infty$ and some Linear elliptic systems. Communications on Pure and Applied Analysis, 2015, 14 (1) : 313-327. doi: 10.3934/cpaa.2015.14.313

[6]

Nikos Katzourakis. Corrigendum to the paper: Nonuniqueness in Vector-Valued Calculus of Variations in $ L^\infty $ and some Linear Elliptic Systems. Communications on Pure and Applied Analysis, 2019, 18 (4) : 2197-2198. doi: 10.3934/cpaa.2019098

[7]

Felix Sadyrbaev. Nonlinear boundary value problems of the calculus of variations. Conference Publications, 2003, 2003 (Special) : 760-770. doi: 10.3934/proc.2003.2003.760

[8]

Manuel Friedrich, Bernd Schmidt. On a discrete-to-continuum convergence result for a two dimensional brittle material in the small displacement regime. Networks and Heterogeneous Media, 2015, 10 (2) : 321-342. doi: 10.3934/nhm.2015.10.321

[9]

Weisheng Niu, Yao Xu. Convergence rates in homogenization of higher-order parabolic systems. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 4203-4229. doi: 10.3934/dcds.2018183

[10]

Zhuchun Li, Yi Liu, Xiaoping Xue. Convergence and stability of generalized gradient systems by Łojasiewicz inequality with application in continuum Kuramoto model. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 345-367. doi: 10.3934/dcds.2019014

[11]

Agnieszka B. Malinowska, Delfim F. M. Torres. Euler-Lagrange equations for composition functionals in calculus of variations on time scales. Discrete and Continuous Dynamical Systems, 2011, 29 (2) : 577-593. doi: 10.3934/dcds.2011.29.577

[12]

Delfim F. M. Torres. Proper extensions of Noether's symmetry theorem for nonsmooth extremals of the calculus of variations. Communications on Pure and Applied Analysis, 2004, 3 (3) : 491-500. doi: 10.3934/cpaa.2004.3.491

[13]

Nuno R. O. Bastos, Rui A. C. Ferreira, Delfim F. M. Torres. Necessary optimality conditions for fractional difference problems of the calculus of variations. Discrete and Continuous Dynamical Systems, 2011, 29 (2) : 417-437. doi: 10.3934/dcds.2011.29.417

[14]

Marco Cicalese, Antonio DeSimone, Caterina Ida Zeppieri. Discrete-to-continuum limits for strain-alignment-coupled systems: Magnetostrictive solids, ferroelectric crystals and nematic elastomers. Networks and Heterogeneous Media, 2009, 4 (4) : 667-708. doi: 10.3934/nhm.2009.4.667

[15]

Gabriella Bretti, Ciro D’Apice, Rosanna Manzo, Benedetto Piccoli. A continuum-discrete model for supply chains dynamics. Networks and Heterogeneous Media, 2007, 2 (4) : 661-694. doi: 10.3934/nhm.2007.2.661

[16]

Robert E. Miller. Homogenization of time-dependent systems with Kelvin-Voigt damping by two-scale convergence. Discrete and Continuous Dynamical Systems, 1995, 1 (4) : 485-502. doi: 10.3934/dcds.1995.1.485

[17]

Ioan Bucataru, Matias F. Dahl. Semi-basic 1-forms and Helmholtz conditions for the inverse problem of the calculus of variations. Journal of Geometric Mechanics, 2009, 1 (2) : 159-180. doi: 10.3934/jgm.2009.1.159

[18]

Gisella Croce, Nikos Katzourakis, Giovanni Pisante. $\mathcal{D}$-solutions to the system of vectorial Calculus of Variations in $L^∞$ via the singular value problem. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 6165-6181. doi: 10.3934/dcds.2017266

[19]

Hans Josef Pesch. Carathéodory's royal road of the calculus of variations: Missed exits to the maximum principle of optimal control theory. Numerical Algebra, Control and Optimization, 2013, 3 (1) : 161-173. doi: 10.3934/naco.2013.3.161

[20]

Ivar Ekeland. From Frank Ramsey to René Thom: A classical problem in the calculus of variations leading to an implicit differential equation. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 1101-1119. doi: 10.3934/dcds.2010.28.1101

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (158)
  • HTML views (140)
  • Cited by (0)

Other articles
by authors

[Back to Top]