
- Previous Article
- DCDS-S Home
- This Issue
-
Next Article
Rigidity of three-dimensional lattices and dimension reduction in heterogeneous nanowires
Carbon-nanotube geometries: Analytical and numerical results
1. | Dipartimento di Ingegneria meccanica, energetica, gestionale, e dei trasporti (DIME), Università degli Studi di Genova, Piazzale Kennedy 1, I-16129 Genova, Italy |
2. | Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, A-1090 Vienna, Austria |
3. | Faculty of Mathematics, Kyushu University, 744 Motooka, Nishiku, Fukuoka, 819-0395, Japan |
4. | Istituto di Matematica Applicata e Tecnologie Informatiche "E. Magenes" -CNR, v. Ferrata 1, I-27100 Pavia, Italy |
We investigate carbon-nanotubes under the perspective ofgeometry optimization. Nanotube geometries are assumed to correspondto atomic configurations whichlocally minimize Tersoff-type interactionenergies. In the specific cases of so-called zigzag and armchairtopologies, candidate optimal configurations are analytically identifiedand their local minimality is numerically checked. Inparticular, these optimal configurations do not correspond neither tothe classical Rolled-up model [
References:
[1] |
P. M. Agrawal, B. S. Sudalayandi, L. M. Raff and R. Komandur,
Molecular dynamics (MD) simulations of the dependence of C-C bond lengths and bond angles on the tensile strain in single-wall carbon nanotubes (SWCNT), Comp. Mat. Sci., 41 (2008), 450-456.
doi: 10.1016/j.commatsci.2007.05.001. |
[2] |
M. E. Budyka, T. S. Zyubina, A. G. Ryabenko, S. H. Lin and A. M. Mebel,
Bond lengths and diameters of armchair single-walled carbon nanotubes, Chem. Phys. Lett., 407 (2005), 266-271.
|
[3] |
B. J. Cox and J. M. Hill,
Exact and approximate geometric parameters for carbon nanotubes incorporating curvature, Carbon, 45 (2007), 1453-1462.
doi: 10.1016/j.carbon.2007.03.028. |
[4] |
M. S. Dresselhaus, G. Dresselhaus and R. Saito,
Carbon fibers based on C60 ad their symmetry, Phys. Rev. B, 45 (1992), 6234-6242.
|
[5] |
M. S. Dresselhaus, G. Dresselhaus and R. Saito,
Physics of carbon nanotubes, Carbon Nanotubes, (1996), 27-35.
doi: 10.1016/B978-0-08-042682-2.50009-6. |
[6] |
W. E and D. Li,
On the crystallization of 2D hexagonal lattices, Comm. Math. Phys., 286 (2009), 1099-1140.
doi: 10.1007/s00220-008-0586-2. |
[7] |
R. D. James,
Objective structures, J. Mech. Phys. Solids, 54 (2006), 2354-2390.
doi: 10.1016/j.jmps.2006.05.008. |
[8] |
H. Jiang, P. Zhang, B. Liu, Y. Huans, P. H. Geubelle, H. Gao and K. C. Hwang,
The effect of nanotube radius on the constitutive model for carbon nanotubes, Comp. Mat. Sci., 28 (2003), 429-442.
doi: 10.1016/j.commatsci.2003.08.004. |
[9] |
V. K. Jindal and A. N. Imtani,
Bond lengths of armchair single-walled carbon nanotubes and their pressure dependence, Comp. Mat. Sci., 44 (2008), 156-162.
|
[10] |
R. A. Jishi, M. S. Dresselhaus and G. Dresselhaus,
Symmetry properties and chiral carbon nanotubes, Phys. Rev. B, 47 (1993), 166671-166674.
|
[11] |
K. Kanamits and S. Saito,
Geometries, electronic properties, and energetics of isolated single-walled carbon nanotubes, J. Phys. Soc. Japan, 71 (2002), 483-486.
doi: 10.1143/JPSJ.71.483. |
[12] |
A. Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yianilos and M. M. J. Treacy,
Young's modulus of single-walled nanotubes, Phys. Rev. B, 58 (1998), 14013-14019.
doi: 10.1103/PhysRevB.58.14013. |
[13] |
J. Kurti, V. Zolyomi, M. Kertesz and G. Sun,
The geometry and the radial breathing model of carbon nanotubes: Beyond the ideal behaviour, New J. Phys., 5 (2003), 1-21.
|
[14] |
R. K. F. Lee, B. J. Cox and J. M. Hill,
General rolled-up and polyhedral models for carbon nanotubes, Fullerenes, Nanotubes and Carbon Nanostructures, 19 (2011), 726-748.
doi: 10.1080/1536383X.2010.494786. |
[15] |
E. Mainini and U. Stefanelli,
Crystallization in carbon nanostructures, Comm. Math. Phys., 328 (2014), 545-571.
doi: 10.1007/s00220-014-1981-5. |
[16] |
E. Mainini, H. Murakawa, P. Piovano and U. Stefanelli, Carbon-nanotube Geometries as Optimal Configurations preprint, 2016. |
[17] |
L. Shen and J. Li, Transversely isotropic elastic properties of single-walled carbon nanotubes, Phys. Rev. B, 69 (2004), 045414, Erratum Phys. Rev. B 81 (2010), 119902.
doi: 10.1103/PhysRevB. 69. 045414. |
[18] |
L. Shen and J. Li,
Equilibrium structure and strain energy of single-walled carbon nanotubes, Phys. Rev. B, 71 (2005), 165427.
doi: 10.1103/PhysRevB.71.165427. |
[19] |
F. H. Stillinger and T. A. Weber,
Computer simulation of local order in condensed phases of silicon, Phys. Rev. B, 8 (1985), 5262-5271.
doi: 10.1103/PhysRevB.31.5262. |
[20] |
J. Tersoff,
New empirical approach for the structure and energy of covalent systems, Phys. Rev. B, 37 (1988), 6991-7000.
doi: 10.1103/PhysRevB.37.6991. |
[21] |
M. M. J. Treacy, T. W. Ebbesen and J. M. Gibson,
Exceptionally high Young's modulus observed for individual carbon nanotubes, Nature, 381 (1996), 678-680.
doi: 10.1038/381678a0. |
[22] |
M.-F. Yu, B. S. Files, S. Arepalli and R. S. Ruoff,
Tensile Loading of Ropes of Single Wall Carbon Nanotubes and their Mechanical Properties, Phys. Rev. Lett., 84 (2000), 5552-5555.
doi: 10.1103/PhysRevLett.84.5552. |
[23] |
T. Zhang, Z. S. Yuan and L. H. Tan,
Exact geometric relationships, symmetry breaking and structural stability for single-walled carbon nanotubes, Nano-Micro Lett., 3 (2011), 28-235.
doi: 10.1007/BF03353677. |
[24] |
X. Zhao, Y. Liu, S. Inoue, R. O. Jones and Y. Ando,
Smallest carbon nanotibe is 3Å in diameter, Phys. Rev. Lett., 92 (2004), 125502.
doi: 10.1007/BF03353677. |
show all references
References:
[1] |
P. M. Agrawal, B. S. Sudalayandi, L. M. Raff and R. Komandur,
Molecular dynamics (MD) simulations of the dependence of C-C bond lengths and bond angles on the tensile strain in single-wall carbon nanotubes (SWCNT), Comp. Mat. Sci., 41 (2008), 450-456.
doi: 10.1016/j.commatsci.2007.05.001. |
[2] |
M. E. Budyka, T. S. Zyubina, A. G. Ryabenko, S. H. Lin and A. M. Mebel,
Bond lengths and diameters of armchair single-walled carbon nanotubes, Chem. Phys. Lett., 407 (2005), 266-271.
|
[3] |
B. J. Cox and J. M. Hill,
Exact and approximate geometric parameters for carbon nanotubes incorporating curvature, Carbon, 45 (2007), 1453-1462.
doi: 10.1016/j.carbon.2007.03.028. |
[4] |
M. S. Dresselhaus, G. Dresselhaus and R. Saito,
Carbon fibers based on C60 ad their symmetry, Phys. Rev. B, 45 (1992), 6234-6242.
|
[5] |
M. S. Dresselhaus, G. Dresselhaus and R. Saito,
Physics of carbon nanotubes, Carbon Nanotubes, (1996), 27-35.
doi: 10.1016/B978-0-08-042682-2.50009-6. |
[6] |
W. E and D. Li,
On the crystallization of 2D hexagonal lattices, Comm. Math. Phys., 286 (2009), 1099-1140.
doi: 10.1007/s00220-008-0586-2. |
[7] |
R. D. James,
Objective structures, J. Mech. Phys. Solids, 54 (2006), 2354-2390.
doi: 10.1016/j.jmps.2006.05.008. |
[8] |
H. Jiang, P. Zhang, B. Liu, Y. Huans, P. H. Geubelle, H. Gao and K. C. Hwang,
The effect of nanotube radius on the constitutive model for carbon nanotubes, Comp. Mat. Sci., 28 (2003), 429-442.
doi: 10.1016/j.commatsci.2003.08.004. |
[9] |
V. K. Jindal and A. N. Imtani,
Bond lengths of armchair single-walled carbon nanotubes and their pressure dependence, Comp. Mat. Sci., 44 (2008), 156-162.
|
[10] |
R. A. Jishi, M. S. Dresselhaus and G. Dresselhaus,
Symmetry properties and chiral carbon nanotubes, Phys. Rev. B, 47 (1993), 166671-166674.
|
[11] |
K. Kanamits and S. Saito,
Geometries, electronic properties, and energetics of isolated single-walled carbon nanotubes, J. Phys. Soc. Japan, 71 (2002), 483-486.
doi: 10.1143/JPSJ.71.483. |
[12] |
A. Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yianilos and M. M. J. Treacy,
Young's modulus of single-walled nanotubes, Phys. Rev. B, 58 (1998), 14013-14019.
doi: 10.1103/PhysRevB.58.14013. |
[13] |
J. Kurti, V. Zolyomi, M. Kertesz and G. Sun,
The geometry and the radial breathing model of carbon nanotubes: Beyond the ideal behaviour, New J. Phys., 5 (2003), 1-21.
|
[14] |
R. K. F. Lee, B. J. Cox and J. M. Hill,
General rolled-up and polyhedral models for carbon nanotubes, Fullerenes, Nanotubes and Carbon Nanostructures, 19 (2011), 726-748.
doi: 10.1080/1536383X.2010.494786. |
[15] |
E. Mainini and U. Stefanelli,
Crystallization in carbon nanostructures, Comm. Math. Phys., 328 (2014), 545-571.
doi: 10.1007/s00220-014-1981-5. |
[16] |
E. Mainini, H. Murakawa, P. Piovano and U. Stefanelli, Carbon-nanotube Geometries as Optimal Configurations preprint, 2016. |
[17] |
L. Shen and J. Li, Transversely isotropic elastic properties of single-walled carbon nanotubes, Phys. Rev. B, 69 (2004), 045414, Erratum Phys. Rev. B 81 (2010), 119902.
doi: 10.1103/PhysRevB. 69. 045414. |
[18] |
L. Shen and J. Li,
Equilibrium structure and strain energy of single-walled carbon nanotubes, Phys. Rev. B, 71 (2005), 165427.
doi: 10.1103/PhysRevB.71.165427. |
[19] |
F. H. Stillinger and T. A. Weber,
Computer simulation of local order in condensed phases of silicon, Phys. Rev. B, 8 (1985), 5262-5271.
doi: 10.1103/PhysRevB.31.5262. |
[20] |
J. Tersoff,
New empirical approach for the structure and energy of covalent systems, Phys. Rev. B, 37 (1988), 6991-7000.
doi: 10.1103/PhysRevB.37.6991. |
[21] |
M. M. J. Treacy, T. W. Ebbesen and J. M. Gibson,
Exceptionally high Young's modulus observed for individual carbon nanotubes, Nature, 381 (1996), 678-680.
doi: 10.1038/381678a0. |
[22] |
M.-F. Yu, B. S. Files, S. Arepalli and R. S. Ruoff,
Tensile Loading of Ropes of Single Wall Carbon Nanotubes and their Mechanical Properties, Phys. Rev. Lett., 84 (2000), 5552-5555.
doi: 10.1103/PhysRevLett.84.5552. |
[23] |
T. Zhang, Z. S. Yuan and L. H. Tan,
Exact geometric relationships, symmetry breaking and structural stability for single-walled carbon nanotubes, Nano-Micro Lett., 3 (2011), 28-235.
doi: 10.1007/BF03353677. |
[24] |
X. Zhao, Y. Liu, S. Inoue, R. O. Jones and Y. Ando,
Smallest carbon nanotibe is 3Å in diameter, Phys. Rev. Lett., 92 (2004), 125502.
doi: 10.1007/BF03353677. |










[1] |
Shuyang Dai, Fengru Wang, Jerry Zhijian Yang, Cheng Yuan. On the Cauchy-Born approximation at finite temperature for alloys. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3131-3153. doi: 10.3934/dcdsb.2021176 |
[2] |
Rabah Amir, Igor V. Evstigneev. A new perspective on the classical Cournot duopoly. Journal of Dynamics and Games, 2017, 4 (4) : 361-367. doi: 10.3934/jdg.2017019 |
[3] |
Azeddine Elmajidi, Elhoussine Elmazoudi, Jamila Elalami, Noureddine Elalami. Dependent delay stability characterization for a polynomial T-S Carbon Dioxide model. Discrete and Continuous Dynamical Systems - S, 2022, 15 (1) : 143-159. doi: 10.3934/dcdss.2021035 |
[4] |
Huiqiang Jiang. Energy minimizers of a thin film equation with born repulsion force. Communications on Pure and Applied Analysis, 2011, 10 (2) : 803-815. doi: 10.3934/cpaa.2011.10.803 |
[5] |
Dinh-Liem Nguyen. The factorization method for the Drude-Born-Fedorov model for periodic chiral structures. Inverse Problems and Imaging, 2016, 10 (2) : 519-547. doi: 10.3934/ipi.2016010 |
[6] |
Huaying Guo, Jin Liang. An optimal control model of carbon reduction and trading. Mathematical Control and Related Fields, 2016, 6 (4) : 535-550. doi: 10.3934/mcrf.2016015 |
[7] |
Martin Frank, Benjamin Seibold. Optimal prediction for radiative transfer: A new perspective on moment closure. Kinetic and Related Models, 2011, 4 (3) : 717-733. doi: 10.3934/krm.2011.4.717 |
[8] |
Neil K. Chada, Yuming Chen, Daniel Sanz-Alonso. Iterative ensemble Kalman methods: A unified perspective with some new variants. Foundations of Data Science, 2021, 3 (3) : 331-369. doi: 10.3934/fods.2021011 |
[9] |
Changyan Di, Qingguo Zhou, Jun Shen, Li Li, Rui Zhou, Jiayin Lin. Innovation event model for STEM education: A constructivism perspective. STEM Education, 2021, 1 (1) : 60-74. doi: 10.3934/steme.2021005 |
[10] |
Haifeng Hu, Kaijun Zhang. Stability of the stationary solution of the cauchy problem to a semiconductor full hydrodynamic model with recombination-generation rate. Kinetic and Related Models, 2015, 8 (1) : 117-151. doi: 10.3934/krm.2015.8.117 |
[11] |
Anis Theljani, Ke Chen. An augmented lagrangian method for solving a new variational model based on gradients similarity measures and high order regulariation for multimodality registration. Inverse Problems and Imaging, 2019, 13 (2) : 309-335. doi: 10.3934/ipi.2019016 |
[12] |
Teemu Lukkari, Mikko Parviainen. Stability of degenerate parabolic Cauchy problems. Communications on Pure and Applied Analysis, 2015, 14 (1) : 201-216. doi: 10.3934/cpaa.2015.14.201 |
[13] |
Jingzhi Tie, Qing Zhang. An optimal mean-reversion trading rule under a Markov chain model. Mathematical Control and Related Fields, 2016, 6 (3) : 467-488. doi: 10.3934/mcrf.2016012 |
[14] |
Frederik Riis Mikkelsen. A model based rule for selecting spiking thresholds in neuron models. Mathematical Biosciences & Engineering, 2016, 13 (3) : 569-578. doi: 10.3934/mbe.2016008 |
[15] |
Kota Kumazaki. A mathematical model of carbon dioxide transport in concrete carbonation process. Discrete and Continuous Dynamical Systems - S, 2014, 7 (1) : 113-125. doi: 10.3934/dcdss.2014.7.113 |
[16] |
Dayi He, Xiaoling Chen, Qi Huang. Influences of carbon emission abatement on firms' production policy based on newsboy model. Journal of Industrial and Management Optimization, 2017, 13 (1) : 251-265. doi: 10.3934/jimo.2016015 |
[17] |
Chjan C. Lim, Da Zhu. Variational analysis of energy-enstrophy theories on the sphere. Conference Publications, 2005, 2005 (Special) : 611-620. doi: 10.3934/proc.2005.2005.611 |
[18] |
L.R. Ritter, Akif Ibragimov, Jay R. Walton, Catherine J. McNeal. Stability analysis using an energy estimate approach of a reaction-diffusion model of atherogenesis. Conference Publications, 2009, 2009 (Special) : 630-639. doi: 10.3934/proc.2009.2009.630 |
[19] |
Fanze Kong, Qi Wang. Stability, free energy and dynamics of multi-spikes in the minimal Keller-Segel model. Discrete and Continuous Dynamical Systems, 2022, 42 (5) : 2499-2523. doi: 10.3934/dcds.2021200 |
[20] |
Goro Akagi. Energy solutions of the Cauchy-Neumann problem for porous medium equations. Conference Publications, 2009, 2009 (Special) : 1-10. doi: 10.3934/proc.2009.2009.1 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]