We consider a class of step skew product systems of interval diffeomorphisms over shift operators, as a means to study random compositions of interval diffeomorphisms. The class is chosen to present in a simplified setting intriguing phenomena of intermingled basins, master-slave synchronization and on-off intermittency. We provide a self-contained discussion of these phenomena.
Citation: |
Figure 1. The first frame depicts the graphs of $g_1,g_2$, the diffeomorphisms on $\mathbb{I}$ that are conjugate to the maps $y \mapsto y \pm 1$ that generate the symmetric random walk. The second frame shows a time series of the iterated function system generated by $g_1,g_2$, both picked with probability $1/2$.
Figure 3. The first frame shows a numerically computed histogram for a time series of the iterated function systems generated by the same diffeomorphisms $f_1^{-1}$ and $f_2^{-1}$ used in Figure 2. The second frame indicates asymptotic convergence of orbits within fibers: it depicts time series for three different initial conditions in $\mathbb{I}$ with the same $\omega$.
Figure 2. With $r = 1/2$, the diffeomorphisms $f_1 (x) = x - r x (1-x)$ and $f_2 (x) = x + r x (1-x)$ (picked with probabilities $1/2$) give negative Lyapunov exponents at the end points $0,1$. Depicted, in the first frame, are the graphs of the inverse diffeomorphisms $f_1^{-1} (x) = \frac{1 - r - \sqrt{(1-r)^2 +4 r x}}{-2r}$ and $f_2^{-1} (x) = \frac{1 + r - \sqrt{(1+r)^2 -4 r x}}{2r}$. The inverse maps give positive Lyapunov exponents at the end points. The second frame shows a time series for the iterated function system generated by $f_1^{-1}$ and $f_2^{-1}$.
Figure 4. The first frame depicts the graphs of $x \mapsto f_i(x) = g_i(x) ( 1 - p(x))$, $i=1,2$, with $g_i (x)$ as in (3), (4) and $p(x) = \frac{3}{10} x (1-x)$. The corresponding step skew product system has a zero Lyapunov exponent along $\Sigma_2^+ \times \{0\}$ and a positive Lyapunov exponent along $\Sigma_2^+ \times \{1\}$. The second frame shows a time series for the iterated function system generated by these diffeomorphisms.
J. C. Alexander
, J. A. Yorke
, Z. You
and I. Kan
, Riddled basins, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2 (1992)
, 795-813.
doi: 10.1142/S0218127492000446.![]() ![]() ![]() |
|
L. Alsedá
and M. Misiurewicz
, Random interval homeomorphisms, Publ. Mat., 58 (2014)
, 15-36.
![]() ![]() |
|
V. A. Antonov
, Modeling cyclic evolution processes: Synchronization by means of a random signal, Vestnik Leningrad. Univ. Mat. Mekh. Astronom, 2 (1984)
, 67-76.
![]() ![]() |
|
L. Arnold,
Random Dynamical Systems Springer Verlag, 1998.
doi: 10.1007/978-3-662-12878-7.![]() ![]() ![]() |
|
K. B. Athreya
and J. Dai
, Random logistic maps Ⅰ, Journal of Theoretical Probability, 13 (2000)
, 595-608.
doi: 10.1023/A:1007828804691.![]() ![]() ![]() |
|
K. B. Athreya
and H. J. Schuh
, Random logistic maps Ⅱ. The Critical case, Journal of Theoretical Probability, 16 (2003)
, 813-830.
doi: 10.1023/B:JOTP.0000011994.90898.81.![]() ![]() ![]() |
|
L. Barreira and Y. Pesin,
Nonuniform Hyperbolicity. Dynamics of Systems with Nonzero Lyapunov Exponents, Cambridge University Press, 2007.
doi: 10.1017/CBO9781107326026.![]() ![]() ![]() |
|
P. H. Baxendale
, Lyapunov exponents and relative entropy for a stochastic flow of diffeomorphisms, Probability Theory and Related Fields, 81 (1989)
, 521-554.
doi: 10.1007/BF00367301.![]() ![]() ![]() |
|
P. Bergé, Y. Pomeau and C. Vidal,
Order Within Chaos. Towards a Deterministic Approach to Turbulence John Wiley & Sons Ltd. , 1986.
![]() ![]() |
|
C. Bonatti, L. J. Díaz and M. Viana,
Dynamics Beyond Uniform Hyperbolicity Springer-Verlag, 2005.
![]() ![]() |
|
A. Bonifant
and J. Milnor
, Schwarzian derivatives and cylinder maps, Fields Institute Communications, 53 (2008)
, 1-21.
![]() ![]() |
|
K. L. Chung,
A Course in Probability Theory Harcourt, Brace & World, Inc. 1968.
![]() ![]() |
|
H. Crauel
, A uniformly exponential random forward attractor which is not a pullback attractor, Arch. Math., 78 (2002)
, 329-336.
doi: 10.1007/s00013-002-8254-9.![]() ![]() ![]() |
|
B. Deroin
, V. A. Kleptsyn
and A. Navas
, Sur la dynamique unidimensionnelle en régularité intermédiaire, Acta Math., 199 (2007)
, 199-262.
doi: 10.1007/s11511-007-0020-1.![]() ![]() ![]() |
|
M. D. Donsker
and S. R. S. Varadhan
, Asymptotic evaluation of certain Markov process expectations for large time. Ⅰ, Comm. Pure Appl. Math., 28 (1975)
, 1-47.
![]() ![]() |
|
J. L. Doob,
Measure Theory Springer Verlag, 1994.
doi: 10.1007/978-1-4612-0877-8.![]() ![]() ![]() |
|
H. Furstenberg
, Boundary theory and stochastic processes on homogeneous spaces, Proc. Sympos. Pure Math., 26 (1973)
, 193-229.
![]() ![]() |
|
M. Gharaei
and A. J. Homburg
, Skew products of interval maps over subshifts, J. Difference Equ. Appl., 22 (2016)
, 941-958.
doi: 10.1080/10236198.2016.1164146.![]() ![]() ![]() |
|
A. S. Gorodetskiĭ
and Yu. S. Il'yashenko
, Certain new robust properties of invariant sets and attractors of dynamical systems, Funct. Anal. Appl., 33 (1999)
, 95-105.
doi: 10.1007/BF02465190.![]() ![]() ![]() |
|
A. S. Gorodetskiĭ
, Yu. S. Il'yashenko
, V. A. Kleptsyn
and M. B. Nal'skiĭ
, Nonremovability of zero Lyapunov exponents, Funct. Anal. Appl., 39 (2005)
, 21-30.
doi: 10.1007/s10688-005-0014-8.![]() ![]() ![]() |
|
J. F. Heagy
, N. Platt
and S. M. Hammel
, Characterization of on-off intermittency, Phys. Rev. E., 49 (1994)
, 1140-1150.
doi: 10.1103/PhysRevE.49.1140.![]() ![]() |
|
Yu. S. Il'yashenko
, Thick attractors of step skew products, Regular and Chaotic Dynamics, 15 (2010)
, 328-334.
doi: 10.1134/S1560354710020188.![]() ![]() ![]() |
|
Yu. S. Il'yashenko
, Thick attractors of boundary preserving diffeomorphisms, Indag. Math. (N.S.), 22 (2011)
, 257-314.
doi: 10.1016/j.indag.2011.09.006.![]() ![]() ![]() |
|
Yu. S. Il'yashenko
, V. A. Kleptsyn
and P. Saltykov
, Openness of the set of boundary preserving maps of an annulus with intermingled attracting basins, J. Fixed Point Theory Appl., 3 (2008)
, 449-463.
doi: 10.1007/s11784-008-0088-z.![]() ![]() ![]() |
|
I. Kan
, Open sets of diffeomorphisms having two attractors, each with an everywhere dense basin, Bull. Amer. Math. Soc., 31 (1994)
, 68-74.
doi: 10.1090/S0273-0979-1994-00507-5.![]() ![]() ![]() |
|
G. Keller
, Stability index for chaotically driven concave maps, J. London Math. Soc., 89 (2014)
, 603-622.
doi: 10.1112/jlms/jdt070.![]() ![]() ![]() |
|
V. A. Kleptsyn
and M. B. Nal'skiĭ
, Contraction of orbits in random dynamical systems on the circle, Funct. Anal. Appl., 38 (2004)
, 267-282.
doi: 10.1007/s10688-005-0005-9.![]() ![]() ![]() |
|
V. A. Kleptsyn
and P. S. Saltykov
, On $C^2$-stable effects of intermingled basins of attractors in classes of boundary-preserving maps, Trans. Moscow Math. Soc., 72 (2011)
, 193-217.
doi: 10.1090/s0077-1554-2012-00196-4.![]() ![]() ![]() |
|
V. A. Kleptsyn
and D. Volk
, Physical measures for nonlinear random walks on interval, Mosc. Math. J., 14 (2014)
, 339-365.
![]() ![]() |
|
P. E. Kloeden and M. Rasmussen,
Nonautonomous Dynamical Systems Amer. Math. Soc. , 2011.
doi: 10.1090/surv/176.![]() ![]() ![]() |
|
J. Lamperti
, Criteria for the recurrence or transience of stochastic processes, Ⅰ, J. Math. Anal. and Appl., 1 (1960)
, 314-330.
doi: 10.1016/0022-247X(60)90005-6.![]() ![]() ![]() |
|
J. Lamperti
, A new class of probability limit theorems, J. Math. and Mech., 11 (1962)
, 749-772.
![]() ![]() |
|
J. Lamperti
, Criteria for stochastic processes Ⅱ: Passage-time moments, J. Math. Anal. and Appl., 7 (1963)
, 127-145.
doi: 10.1016/0022-247X(63)90083-0.![]() ![]() ![]() |
|
J. Milnor
, On the concept of attractor, Commun. Math. Phys., 99 (1985)
, 177-195.
doi: 10.1007/BF01212280.![]() ![]() ![]() |
|
E. Ott
, J. Sommerer
, J. Alexander
, I. Kan
and J. Yorke
, Scaling behavior of chaotic systems with riddled basins, Physical Review Letters, 71 (1993)
, 4134-4137.
doi: 10.1103/PhysRevLett.71.4134.![]() ![]() ![]() |
|
L. M. Pecora
and T. L. Carroll
, Synchronization in chaotic systems, Phys. Rev. Lett., 64 (1990)
, 821-824.
doi: 10.1103/PhysRevLett.64.821.![]() ![]() ![]() |
|
A. Pikovsky, M. Rosenblum and J. Kurths,
Synchronization. A Universal Concept in Nonlinear Sciences Cambridge University Press, 2001.
doi: 10.1017/CBO9780511755743.![]() ![]() ![]() |
|
N. Platt
, E. A. Spiegel
and C. Tresser
, On-off intermittency: A mechanism for bursting, Phys. Rev. Letters, 70 (1993)
, 279-282.
doi: 10.1103/PhysRevLett.70.279.![]() ![]() |
|
A. N. Shiryayev,
Probability Springer Verlag, 1984.
doi: 10.1007/978-1-4899-0018-0.![]() ![]() ![]() |
|
J. Stark
, Invariant graphs for forced systems, Phys. D, 109 (1997)
, 163-179.
doi: 10.1016/S0167-2789(97)00167-X.![]() ![]() ![]() |
|
M. Viana,
Lectures on Lyapunov Exponents Cambridge University Press, 2014.
doi: 10.1017/CBO9781139976602.![]() ![]() ![]() |
|
H. Zmarrou
and A. J. Homburg
, Bifurcations of stationary densities of random diffeomorphisms, Ergod. Th. Dyn. Systems, 27 (2007)
, 1651-1692.
doi: 10.1017/S0143385707000077.![]() ![]() ![]() |
|
H. Zmarrou
and A. J. Homburg
, Dynamics and bifurcations of random circle diffeomorphisms, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008)
, 719-731.
doi: 10.3934/dcdsb.2008.10.719.![]() ![]() ![]() |
The first frame depicts the graphs of
The first frame shows a numerically computed histogram for a time series of the iterated function systems generated by the same diffeomorphisms
With
The first frame depicts the graphs of
A sequence of stopping times is defined to label subsequent iterates where