\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A family of self-avoiding random walks interpolating the loop-erased random walk and a self-avoiding walk on the Sierpiński gasket

  • * Corresponding author:Kumiko Hattori

    * Corresponding author:Kumiko Hattori 
Abstract Full Text(HTML) Figure(4) Related Papers Cited by
  • We show that the ‘erasing-larger-loops-first’ (ELLF) method, which was first introduced for erasing loops from the simple random walk on the Sierpiński gasket, does work also for non-Markov random walks, in particular, self-repelling walks to construct a new family of self-avoiding walks on the Sierpiński gasket. The one-parameter family constructed in this method continuously connects the loop-erased random walk and a self-avoiding walk which has the same asymptotic behavior as the ‘standard’ self-avoiding walk. We prove the existence of the scaling limit and study some path properties: The exponent $ν$ governing the short-time behavior of the scaling limit varies continuously in the parameter. The limit process is almost surely self-avoiding, while it has path Hausdorff dimension $1/ν $, which is strictly greater than $1$.

    Mathematics Subject Classification: 60F99, 60G17, 28A80, 37F25, 37F35.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  $F_3$

    Figure 2.  $w, \tilde{w}, w_1, w_2, w_3$

    Figure 3.  Loopless paths from $O$ to $a$ on $F_1$

    Figure 4.  The loop-erasing procedure: (a) $w$, (b) $Q_1w$, (c) $LQ_1w=\hat{Q}_1w$, (d) $\tilde{L}w$

  •   K. B. Athreya and P. E. Ney, Branching Processes Springer, 1972.
      M. T. Barlow  and  E. A. Perkins , Brownian motion on the Sierpinski gasket, Probab. Theory Relat. Fields, 79 (1988) , 543-623.  doi: 10.1007/BF00318785.
      B. Hambly , K. Hattori  and  T. Hattori , Self-repelling walk on the Sierpiński gasket, Probab. Theory Relat. Fields, 124 (2002) , 1-25.  doi: 10.1007/s004400100192.
      K. Hattori , Fractal geometry of self-avoiding processes, J. Math. Sci. Univ. Tokyo, 3 (1996) , 379-397. 
      T. Hattori, Random Walks and Renormalization Group Kyoritsu Publishing (in Japanese).
      K. Hattori  and  T. Hattori , Self-avoiding process on the Sierpinski gasket, Probab. Theory Relat. Fields, 88 (1991) , 405-428.  doi: 10.1007/BF01192550.
      K. Hattori  and  T. Hattori , Displacement exponent of self-repelling walks and self-attracting walks on the Sierpinski gasket, J. Math. Sci. Univ. Tokyo, 12 (2005) , 417-443. 
      K. Hattori , T. Hattori  and  S. Kusuoka , Self-avoiding paths on the pre-Sierpinski gasket, Probab. Theory Relat. Fields, 84 (1990) , 1-26.  doi: 10.1007/BF01288555.
      K. Hattori , T. Hattori  and  S. Kusuoka , Self-avoiding paths on the three-dimensional Sierpinski gasket, Publ. RIMS, 29 (1993) , 455-509.  doi: 10.2977/prims/1195167053.
      T. Hattori  and  S. Kusuoka , The exponent for mean square displacement of self-avoiding random walk on Sierpinski gasket, Probab. Theory Relat. Fields, 93 (1992) , 273-284.  doi: 10.1007/BF01193052.
      K. Hattori  and  M. Mizuno , Loop-erased random walk on the Sierpinski gasket, Stoch. Process. Appl., 124 (2014) , 566-585.  doi: 10.1016/j.spa.2013.08.006.
      R. van der Hofstad  and  W. König , A survey of one-dimensional random polymers, J. Stat. Phys., 103 (2001) , 915-944.  doi: 10.1023/A:1010309005541.
      O. D. Jones , Large deviations for supercritical multitype branching processes, J. Appl. Prob., 41 (2004) , 703-720.  doi: 10.1017/S0021900200020490.
      G. Kozma , The scaling limit of loop-erased random walk in three dimensions, Acta Math., 199 (2007) , 29-152.  doi: 10.1007/s11511-007-0018-8.
      T. Kumagai, Construction and some properties of a class of non-symmetric diffusion processes on the Sierpinski gasket, Asymptotic problems in probability theory: Stochastic models and diffusions on fractals (Sanda/Kyoto, 1990), Pitman Res. Notes Math. Ser. , Longman Sci. Texh. , Harlow, 283 (1980), 219–247.
      G. F. Lawler , A self-avoiding random walk, Duke Math. J., 47 (1980) , 655-693.  doi: 10.1215/S0012-7094-80-04741-9.
      G. F. Lawler , The logarithmic correction for loop-erased walk in four dimensions, J. Fourier Anal. Appl., (1995) , 347-361. 
      G. F. Lawler , O. Schramm  and  W. Werner , Conformal invariance of planar loop-erased random walks and uniform spanning trees, Ann. Probab., 32 (2004) , 939-995.  doi: 10.1214/aop/1079021469.
      N. Madras and G. Slade, The Self-avoiding Walk Birkhäuser, 1993.
      O. Schramm, Scaling limits of loop-erased random walks and uniform spanning trees, Israel J. Math. , 118 (2000), 221–288. doi: 10.1007/BF02803524.
      M. Shinoda , E. Teufl  and  S. Wagner , Uniform spanning trees on Sierpiński graphs, Lat. Am. J. Probab. Math. Stat., 11 (2014) , 737-780. 
  • 加载中

Figures(4)

SHARE

Article Metrics

HTML views(1665) PDF downloads(181) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return