
-
Previous Article
Stability index, uncertainty exponent, and thermodynamic formalism for intermingled basins of chaotic attractors
- DCDS-S Home
- This Issue
-
Next Article
Homoclinic tangencies to resonant saddles and discrete Lorenz attractors
A family of self-avoiding random walks interpolating the loop-erased random walk and a self-avoiding walk on the Sierpiński gasket
Department of Mathematics and Information Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan |
We show that the ‘erasing-larger-loops-first’ (ELLF) method, which was first introduced for erasing loops from the simple random walk on the Sierpiński gasket, does work also for non-Markov random walks, in particular, self-repelling walks to construct a new family of self-avoiding walks on the Sierpiński gasket. The one-parameter family constructed in this method continuously connects the loop-erased random walk and a self-avoiding walk which has the same asymptotic behavior as the ‘standard’ self-avoiding walk. We prove the existence of the scaling limit and study some path properties: The exponent $ν$ governing the short-time behavior of the scaling limit varies continuously in the parameter. The limit process is almost surely self-avoiding, while it has path Hausdorff dimension $1/ν $, which is strictly greater than $1$.
References:
[1] |
K. B. Athreya and P. E. Ney,
Branching Processes Springer, 1972. |
[2] |
M. T. Barlow and E. A. Perkins,
Brownian motion on the Sierpinski gasket, Probab. Theory Relat. Fields, 79 (1988), 543-623.
doi: 10.1007/BF00318785. |
[3] |
B. Hambly, K. Hattori and T. Hattori,
Self-repelling walk on the Sierpiński gasket, Probab. Theory Relat. Fields, 124 (2002), 1-25.
doi: 10.1007/s004400100192. |
[4] |
K. Hattori,
Fractal geometry of self-avoiding processes, J. Math. Sci. Univ. Tokyo, 3 (1996), 379-397.
|
[5] |
T. Hattori,
Random Walks and Renormalization Group Kyoritsu Publishing (in Japanese). |
[6] |
K. Hattori and T. Hattori,
Self-avoiding process on the Sierpinski gasket, Probab. Theory Relat. Fields, 88 (1991), 405-428.
doi: 10.1007/BF01192550. |
[7] |
K. Hattori and T. Hattori,
Displacement exponent of self-repelling walks and self-attracting walks on the Sierpinski gasket, J. Math. Sci. Univ. Tokyo, 12 (2005), 417-443.
|
[8] |
K. Hattori, T. Hattori and S. Kusuoka,
Self-avoiding paths on the pre-Sierpinski gasket, Probab. Theory Relat. Fields, 84 (1990), 1-26.
doi: 10.1007/BF01288555. |
[9] |
K. Hattori, T. Hattori and S. Kusuoka,
Self-avoiding paths on the three-dimensional Sierpinski gasket, Publ. RIMS, 29 (1993), 455-509.
doi: 10.2977/prims/1195167053. |
[10] |
T. Hattori and S. Kusuoka,
The exponent for mean square displacement of self-avoiding random walk on Sierpinski gasket, Probab. Theory Relat. Fields, 93 (1992), 273-284.
doi: 10.1007/BF01193052. |
[11] |
K. Hattori and M. Mizuno,
Loop-erased random walk on the Sierpinski gasket, Stoch. Process. Appl., 124 (2014), 566-585.
doi: 10.1016/j.spa.2013.08.006. |
[12] |
R. van der Hofstad and W. König,
A survey of one-dimensional random polymers, J. Stat. Phys., 103 (2001), 915-944.
doi: 10.1023/A:1010309005541. |
[13] |
O. D. Jones,
Large deviations for supercritical multitype branching processes, J. Appl. Prob., 41 (2004), 703-720.
doi: 10.1017/S0021900200020490. |
[14] |
G. Kozma,
The scaling limit of loop-erased random walk in three dimensions, Acta Math., 199 (2007), 29-152.
doi: 10.1007/s11511-007-0018-8. |
[15] |
T. Kumagai, Construction and some properties of a class of non-symmetric diffusion processes on the Sierpinski gasket, Asymptotic problems in probability theory: Stochastic models and diffusions on fractals (Sanda/Kyoto, 1990), Pitman Res. Notes Math. Ser. , Longman Sci. Texh. , Harlow, 283 (1980), 219–247. |
[16] |
G. F. Lawler,
A self-avoiding random walk, Duke Math. J., 47 (1980), 655-693.
doi: 10.1215/S0012-7094-80-04741-9. |
[17] |
G. F. Lawler,
The logarithmic correction for loop-erased walk in four dimensions, J. Fourier Anal. Appl., (1995), 347-361.
|
[18] |
G. F. Lawler, O. Schramm and W. Werner,
Conformal invariance of planar loop-erased random walks and uniform spanning trees, Ann. Probab., 32 (2004), 939-995.
doi: 10.1214/aop/1079021469. |
[19] |
N. Madras and G. Slade,
The Self-avoiding Walk Birkhäuser, 1993. |
[20] |
O. Schramm, Scaling limits of loop-erased random walks and uniform spanning trees, Israel J. Math. , 118 (2000), 221–288.
doi: 10.1007/BF02803524. |
[21] |
M. Shinoda, E. Teufl and S. Wagner,
Uniform spanning trees on Sierpiński graphs, Lat. Am. J. Probab. Math. Stat., 11 (2014), 737-780.
|
show all references
References:
[1] |
K. B. Athreya and P. E. Ney,
Branching Processes Springer, 1972. |
[2] |
M. T. Barlow and E. A. Perkins,
Brownian motion on the Sierpinski gasket, Probab. Theory Relat. Fields, 79 (1988), 543-623.
doi: 10.1007/BF00318785. |
[3] |
B. Hambly, K. Hattori and T. Hattori,
Self-repelling walk on the Sierpiński gasket, Probab. Theory Relat. Fields, 124 (2002), 1-25.
doi: 10.1007/s004400100192. |
[4] |
K. Hattori,
Fractal geometry of self-avoiding processes, J. Math. Sci. Univ. Tokyo, 3 (1996), 379-397.
|
[5] |
T. Hattori,
Random Walks and Renormalization Group Kyoritsu Publishing (in Japanese). |
[6] |
K. Hattori and T. Hattori,
Self-avoiding process on the Sierpinski gasket, Probab. Theory Relat. Fields, 88 (1991), 405-428.
doi: 10.1007/BF01192550. |
[7] |
K. Hattori and T. Hattori,
Displacement exponent of self-repelling walks and self-attracting walks on the Sierpinski gasket, J. Math. Sci. Univ. Tokyo, 12 (2005), 417-443.
|
[8] |
K. Hattori, T. Hattori and S. Kusuoka,
Self-avoiding paths on the pre-Sierpinski gasket, Probab. Theory Relat. Fields, 84 (1990), 1-26.
doi: 10.1007/BF01288555. |
[9] |
K. Hattori, T. Hattori and S. Kusuoka,
Self-avoiding paths on the three-dimensional Sierpinski gasket, Publ. RIMS, 29 (1993), 455-509.
doi: 10.2977/prims/1195167053. |
[10] |
T. Hattori and S. Kusuoka,
The exponent for mean square displacement of self-avoiding random walk on Sierpinski gasket, Probab. Theory Relat. Fields, 93 (1992), 273-284.
doi: 10.1007/BF01193052. |
[11] |
K. Hattori and M. Mizuno,
Loop-erased random walk on the Sierpinski gasket, Stoch. Process. Appl., 124 (2014), 566-585.
doi: 10.1016/j.spa.2013.08.006. |
[12] |
R. van der Hofstad and W. König,
A survey of one-dimensional random polymers, J. Stat. Phys., 103 (2001), 915-944.
doi: 10.1023/A:1010309005541. |
[13] |
O. D. Jones,
Large deviations for supercritical multitype branching processes, J. Appl. Prob., 41 (2004), 703-720.
doi: 10.1017/S0021900200020490. |
[14] |
G. Kozma,
The scaling limit of loop-erased random walk in three dimensions, Acta Math., 199 (2007), 29-152.
doi: 10.1007/s11511-007-0018-8. |
[15] |
T. Kumagai, Construction and some properties of a class of non-symmetric diffusion processes on the Sierpinski gasket, Asymptotic problems in probability theory: Stochastic models and diffusions on fractals (Sanda/Kyoto, 1990), Pitman Res. Notes Math. Ser. , Longman Sci. Texh. , Harlow, 283 (1980), 219–247. |
[16] |
G. F. Lawler,
A self-avoiding random walk, Duke Math. J., 47 (1980), 655-693.
doi: 10.1215/S0012-7094-80-04741-9. |
[17] |
G. F. Lawler,
The logarithmic correction for loop-erased walk in four dimensions, J. Fourier Anal. Appl., (1995), 347-361.
|
[18] |
G. F. Lawler, O. Schramm and W. Werner,
Conformal invariance of planar loop-erased random walks and uniform spanning trees, Ann. Probab., 32 (2004), 939-995.
doi: 10.1214/aop/1079021469. |
[19] |
N. Madras and G. Slade,
The Self-avoiding Walk Birkhäuser, 1993. |
[20] |
O. Schramm, Scaling limits of loop-erased random walks and uniform spanning trees, Israel J. Math. , 118 (2000), 221–288.
doi: 10.1007/BF02803524. |
[21] |
M. Shinoda, E. Teufl and S. Wagner,
Uniform spanning trees on Sierpiński graphs, Lat. Am. J. Probab. Math. Stat., 11 (2014), 737-780.
|
[1] |
Wafa Hamrouni, Ali Abdennadher. Random walk's models for fractional diffusion equation. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2509-2530. doi: 10.3934/dcdsb.2016058 |
[2] |
Edward Belbruno. Random walk in the three-body problem and applications. Discrete and Continuous Dynamical Systems - S, 2008, 1 (4) : 519-540. doi: 10.3934/dcdss.2008.1.519 |
[3] |
Brendan Weickert. Infinite-dimensional complex dynamics: A quantum random walk. Discrete and Continuous Dynamical Systems, 2001, 7 (3) : 517-524. doi: 10.3934/dcds.2001.7.517 |
[4] |
Samuel Herrmann, Nicolas Massin. Exit problem for Ornstein-Uhlenbeck processes: A random walk approach. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 3199-3215. doi: 10.3934/dcdsb.2020058 |
[5] |
Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete and Continuous Dynamical Systems, 2021, 41 (6) : 2891-2905. doi: 10.3934/dcds.2020390 |
[6] |
Luigi Ambrosio, Luis A. Caffarelli, A. Maugeri. Preface: A beautiful walk in the way of the understanding. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : i-vi. doi: 10.3934/dcds.2011.31.4i |
[7] |
Eric A. Carlen, Maria C. Carvalho, Amit Einav. Entropy production inequalities for the Kac Walk. Kinetic and Related Models, 2018, 11 (2) : 219-238. doi: 10.3934/krm.2018012 |
[8] |
Hillel Furstenberg. From invariance to self-similarity: The work of Michael Hochman on fractal dimension and its aftermath. Journal of Modern Dynamics, 2019, 15: 437-449. doi: 10.3934/jmd.2019027 |
[9] |
Michael L. Frankel, Victor Roytburd. Fractal dimension of attractors for a Stefan problem. Conference Publications, 2003, 2003 (Special) : 281-287. doi: 10.3934/proc.2003.2003.281 |
[10] |
Shengfan Zhou, Min Zhao. Fractal dimension of random attractor for stochastic non-autonomous damped wave equation with linear multiplicative white noise. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2887-2914. doi: 10.3934/dcds.2016.36.2887 |
[11] |
Krzysztof Barański. Hausdorff dimension of self-affine limit sets with an invariant direction. Discrete and Continuous Dynamical Systems, 2008, 21 (4) : 1015-1023. doi: 10.3934/dcds.2008.21.1015 |
[12] |
Joseph Squillace. Estimating the fractal dimension of sets determined by nonergodic parameters. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5843-5859. doi: 10.3934/dcds.2017254 |
[13] |
Shiping Cao, Shuangping Li, Robert S. Strichartz, Prem Talwai. A trace theorem for Sobolev spaces on the Sierpinski gasket. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3901-3916. doi: 10.3934/cpaa.2020159 |
[14] |
Jessica Hyde, Daniel Kelleher, Jesse Moeller, Luke Rogers, Luis Seda. Magnetic Laplacians of locally exact forms on the Sierpinski Gasket. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2299-2319. doi: 10.3934/cpaa.2017113 |
[15] |
V. V. Chepyzhov, A. A. Ilyin. On the fractal dimension of invariant sets: Applications to Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 117-135. doi: 10.3934/dcds.2004.10.117 |
[16] |
Manuel Fernández-Martínez. Theoretical properties of fractal dimensions for fractal structures. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1113-1128. doi: 10.3934/dcdss.2015.8.1113 |
[17] |
Uta Renata Freiberg. Einstein relation on fractal objects. Discrete and Continuous Dynamical Systems - B, 2012, 17 (2) : 509-525. doi: 10.3934/dcdsb.2012.17.509 |
[18] |
Umberto Mosco, Maria Agostina Vivaldi. Vanishing viscosity for fractal sets. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 1207-1235. doi: 10.3934/dcds.2010.28.1207 |
[19] |
María Anguiano, Alain Haraux. The $\varepsilon$-entropy of some infinite dimensional compact ellipsoids and fractal dimension of attractors. Evolution Equations and Control Theory, 2017, 6 (3) : 345-356. doi: 10.3934/eect.2017018 |
[20] |
Xian Zhang, Vinesh Nishawala, Martin Ostoja-Starzewski. Anti-plane shear Lamb's problem on random mass density fields with fractal and Hurst effects. Evolution Equations and Control Theory, 2019, 8 (1) : 231-246. doi: 10.3934/eect.2019013 |
2021 Impact Factor: 1.865
Tools
Metrics
Other articles
by authors
[Back to Top]