-
Previous Article
Exponential stability of 1-d wave equation with the boundary time delay based on the interior control
- DCDS-S Home
- This Issue
-
Next Article
Hopf-pitchfork bifurcation analysis in a coupled FHN neurons model with delay
Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term
1. | School of Mathematics and Computer Science, Shangrao Normal University, Shangrao 334001, China |
2. | Chern Institute of Mathematics and LPMC, Nankai University, Tianjin 300071, China |
$$x''+α x^+-β x^-+q(x)f(x')+g(t,x)=p(t), $$ |
$q, f∈ C^1(\mathbb{R}),$ |
$g(t,x)∈ C^{0,1}(\mathbf{S}^1× \mathbb{R})$ |
$p(t)∈ C^0(\mathbf{S}^1)$ |
$\mathbf{S}^1= \mathbb{R}/2π\mathbb{Z}$ |
$α$ |
$β $ |
$$\frac{1}{\sqrt{α}}+\frac{1}{\sqrt{β}}=\frac{2}{ω}$$ |
$ω∈ \mathbb{R}^+ $ |
$f,$ |
$g$ |
$p$ |
$q, f, g$ |
$p$ |
References:
[1] |
A. Capietto and B. Liu,
Quasi-periodic solutions of a forced asymmetric oscillator at resonance, Nonlinear Analysis: Theory, Methods & Applications, 56 (2004), 105-117.
doi: 10.1016/j.na.2003.09.001. |
[2] |
A. Capietto, W. Dambrosio and B. Liu,
On the boundedness of solutions to a nonlinear singular oscillator, Z. Angew. Math. Phys., 60 (2009), 1007-1034.
doi: 10.1007/s00033-008-8094-y. |
[3] |
A. Capietto, W. Dambrosio and X. Wang,
Quasi-periodic solutions of a damped reversible oscillator at resonance, Differential and Integral Equations, 22 (2009), 1033-1046.
|
[4] |
S. Chow and M. Pei,
Aubry-Mather theorem and quasiperiodic orbits for time dependent reversible systems, Nonlinear Analysis: Theory, Methods} & \emph{Applications, 25 (1995), 905-931.
doi: 10.1016/0362-546X(95)00087-C. |
[5] |
B. Liu,
Boundedness in asymmetric oscillations, J. Math. Anal. Appl., 231 (1999), 355-373.
doi: 10.1006/jmaa.1998.6219. |
[6] |
B. Liu and J. Song,
Invariant curved of reversible mappings with small twist, Acta Math. Sinica (English Series), 20 (2004), 15-24.
doi: 10.1007/s10114-004-0316-4. |
[7] |
X. Li,
Invariant tori for semilinear reversible systems, Nonlinear Analysis, 56 (2004), 133-146.
doi: 10.1016/j.na.2003.09.004. |
[8] |
R. Ortega,
Asymmetric oscillators and twist mappings, J. London Math. Soc., 53 (1996), 325-342.
doi: 10.1112/jlms/53.2.325. |
[9] |
M. Pei,
Mather sets for superlinear Duffing equations, Science in China, Ser. A, 36 (1993), 524-537.
|
[10] |
M. Pei,
Aubry-Mather sets for finite-twist maps of a cylinder and semilinear Duffing equations, J. Differential Equations, 113 (1994), 106-127.
doi: 10.1006/jdeq.1994.1116. |
[11] |
D. Qian,
Mather sets for sublinear Duffing Equations, Chin. Ann. of Math., Ser. B, 15 (1994), 421-434.
|
[12] |
J. Si,
Invariant tori for a reversible oscillator with a nonlinear damping and periodic forcing term, Nonlinear Anal., 64 (2006), 1475-1495.
doi: 10.1016/j.na.2005.06.046. |
[13] |
X. Wang,
Invariant tori and boundedness in asymmetric oscillations, Acta Math. Sinica(English Series), 19 (2003), 765-782.
doi: 10.1007/s10114-003-0249-3. |
[14] |
X. Wang,
Aubry-Mather sets for semilinear Duffing equations, Acta Mathematica Sinica(Chinese Series), 52 (2009), 605-610.
|
[15] |
X. Wang,
Aubry-Mather sets for sublinear asymmetric Duffing equations, Science China Mathematics, 42 (2012), 13-21.
doi: 10.1360/012011-328. |
[16] |
X. Wang,
Quasi-periodic solutions for second order differential equation with superlinear asymmetric nonlinearities and nonlinear damping term, Boundary Value Problems, 101 (2015), 1-12.
doi: 10.1186/s13661-015-0370-0. |
[17] |
X. Wang,
Aubry-Mather sets in semilinear asymmetric Duffing equations, Advances in Difference Equations, 297 (2016), 1-12.
doi: 10.1186/s13662-016-1024-y. |
[18] |
Y. Wang,
Boundedness of solutions in asymmetric oscillations via the twist theorem, Acta Math. Sinica(English Series), 17 (2001), 313-318.
doi: 10.1007/s101140000043. |
[19] |
X. Yang,
Boundedness of solutions for sublinear reversible systems, Applied Mathematics and Computation, 158 (2004), 389-396.
doi: 10.1016/j.amc.2003.08.092. |
[20] |
X. Yang and K. Lo,
Quasi-periodic solutions in nonlinear asymmetric oscillations, Zeitschrift für Analysis und ihre Anwendungen, 26 (2007), 207-220.
doi: 10.4171/ZAA/1319. |
show all references
References:
[1] |
A. Capietto and B. Liu,
Quasi-periodic solutions of a forced asymmetric oscillator at resonance, Nonlinear Analysis: Theory, Methods & Applications, 56 (2004), 105-117.
doi: 10.1016/j.na.2003.09.001. |
[2] |
A. Capietto, W. Dambrosio and B. Liu,
On the boundedness of solutions to a nonlinear singular oscillator, Z. Angew. Math. Phys., 60 (2009), 1007-1034.
doi: 10.1007/s00033-008-8094-y. |
[3] |
A. Capietto, W. Dambrosio and X. Wang,
Quasi-periodic solutions of a damped reversible oscillator at resonance, Differential and Integral Equations, 22 (2009), 1033-1046.
|
[4] |
S. Chow and M. Pei,
Aubry-Mather theorem and quasiperiodic orbits for time dependent reversible systems, Nonlinear Analysis: Theory, Methods} & \emph{Applications, 25 (1995), 905-931.
doi: 10.1016/0362-546X(95)00087-C. |
[5] |
B. Liu,
Boundedness in asymmetric oscillations, J. Math. Anal. Appl., 231 (1999), 355-373.
doi: 10.1006/jmaa.1998.6219. |
[6] |
B. Liu and J. Song,
Invariant curved of reversible mappings with small twist, Acta Math. Sinica (English Series), 20 (2004), 15-24.
doi: 10.1007/s10114-004-0316-4. |
[7] |
X. Li,
Invariant tori for semilinear reversible systems, Nonlinear Analysis, 56 (2004), 133-146.
doi: 10.1016/j.na.2003.09.004. |
[8] |
R. Ortega,
Asymmetric oscillators and twist mappings, J. London Math. Soc., 53 (1996), 325-342.
doi: 10.1112/jlms/53.2.325. |
[9] |
M. Pei,
Mather sets for superlinear Duffing equations, Science in China, Ser. A, 36 (1993), 524-537.
|
[10] |
M. Pei,
Aubry-Mather sets for finite-twist maps of a cylinder and semilinear Duffing equations, J. Differential Equations, 113 (1994), 106-127.
doi: 10.1006/jdeq.1994.1116. |
[11] |
D. Qian,
Mather sets for sublinear Duffing Equations, Chin. Ann. of Math., Ser. B, 15 (1994), 421-434.
|
[12] |
J. Si,
Invariant tori for a reversible oscillator with a nonlinear damping and periodic forcing term, Nonlinear Anal., 64 (2006), 1475-1495.
doi: 10.1016/j.na.2005.06.046. |
[13] |
X. Wang,
Invariant tori and boundedness in asymmetric oscillations, Acta Math. Sinica(English Series), 19 (2003), 765-782.
doi: 10.1007/s10114-003-0249-3. |
[14] |
X. Wang,
Aubry-Mather sets for semilinear Duffing equations, Acta Mathematica Sinica(Chinese Series), 52 (2009), 605-610.
|
[15] |
X. Wang,
Aubry-Mather sets for sublinear asymmetric Duffing equations, Science China Mathematics, 42 (2012), 13-21.
doi: 10.1360/012011-328. |
[16] |
X. Wang,
Quasi-periodic solutions for second order differential equation with superlinear asymmetric nonlinearities and nonlinear damping term, Boundary Value Problems, 101 (2015), 1-12.
doi: 10.1186/s13661-015-0370-0. |
[17] |
X. Wang,
Aubry-Mather sets in semilinear asymmetric Duffing equations, Advances in Difference Equations, 297 (2016), 1-12.
doi: 10.1186/s13662-016-1024-y. |
[18] |
Y. Wang,
Boundedness of solutions in asymmetric oscillations via the twist theorem, Acta Math. Sinica(English Series), 17 (2001), 313-318.
doi: 10.1007/s101140000043. |
[19] |
X. Yang,
Boundedness of solutions for sublinear reversible systems, Applied Mathematics and Computation, 158 (2004), 389-396.
doi: 10.1016/j.amc.2003.08.092. |
[20] |
X. Yang and K. Lo,
Quasi-periodic solutions in nonlinear asymmetric oscillations, Zeitschrift für Analysis und ihre Anwendungen, 26 (2007), 207-220.
doi: 10.4171/ZAA/1319. |
[1] |
Bassam Fayad. Discrete and continuous spectra on laminations over Aubry-Mather sets. Discrete and Continuous Dynamical Systems, 2008, 21 (3) : 823-834. doi: 10.3934/dcds.2008.21.823 |
[2] |
Kaizhi Wang, Lin Wang, Jun Yan. Aubry-Mather theory for contact Hamiltonian systems II. Discrete and Continuous Dynamical Systems, 2022, 42 (2) : 555-595. doi: 10.3934/dcds.2021128 |
[3] |
Ugo Bessi. Viscous Aubry-Mather theory and the Vlasov equation. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 379-420. doi: 10.3934/dcds.2014.34.379 |
[4] |
Hans Koch, Rafael De La Llave, Charles Radin. Aubry-Mather theory for functions on lattices. Discrete and Continuous Dynamical Systems, 1997, 3 (1) : 135-151. doi: 10.3934/dcds.1997.3.135 |
[5] |
Claudia Valls. On the quasi-periodic solutions of generalized Kaup systems. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 467-482. doi: 10.3934/dcds.2015.35.467 |
[6] |
Qihuai Liu, Dingbian Qian, Zhiguo Wang. Quasi-periodic solutions of the Lotka-Volterra competition systems with quasi-periodic perturbations. Discrete and Continuous Dynamical Systems - B, 2012, 17 (5) : 1537-1550. doi: 10.3934/dcdsb.2012.17.1537 |
[7] |
Fabio Camilli, Annalisa Cesaroni. A note on singular perturbation problems via Aubry-Mather theory. Discrete and Continuous Dynamical Systems, 2007, 17 (4) : 807-819. doi: 10.3934/dcds.2007.17.807 |
[8] |
Artur O. Lopes, Rafael O. Ruggiero. Large deviations and Aubry-Mather measures supported in nonhyperbolic closed geodesics. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 1155-1174. doi: 10.3934/dcds.2011.29.1155 |
[9] |
Yasuhiro Fujita, Katsushi Ohmori. Inequalities and the Aubry-Mather theory of Hamilton-Jacobi equations. Communications on Pure and Applied Analysis, 2009, 8 (2) : 683-688. doi: 10.3934/cpaa.2009.8.683 |
[10] |
Diogo A. Gomes. Viscosity solution methods and the discrete Aubry-Mather problem. Discrete and Continuous Dynamical Systems, 2005, 13 (1) : 103-116. doi: 10.3934/dcds.2005.13.103 |
[11] |
Siniša Slijepčević. The Aubry-Mather theorem for driven generalized elastic chains. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2983-3011. doi: 10.3934/dcds.2014.34.2983 |
[12] |
Ernest Fontich, Rafael de la Llave, Yannick Sire. A method for the study of whiskered quasi-periodic and almost-periodic solutions in finite and infinite dimensional Hamiltonian systems. Electronic Research Announcements, 2009, 16: 9-22. doi: 10.3934/era.2009.16.9 |
[13] |
Yanling Shi, Junxiang Xu, Xindong Xu. Quasi-periodic solutions of generalized Boussinesq equation with quasi-periodic forcing. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2501-2519. doi: 10.3934/dcdsb.2017104 |
[14] |
Lei Jiao, Yiqian Wang. The construction of quasi-periodic solutions of quasi-periodic forced Schrödinger equation. Communications on Pure and Applied Analysis, 2009, 8 (5) : 1585-1606. doi: 10.3934/cpaa.2009.8.1585 |
[15] |
Dongfeng Zhang, Junxiang Xu. On the reducibility of analytic quasi-periodic systems with Liouvillean basic frequencies. Communications on Pure and Applied Analysis, 2022, 21 (4) : 1417-1445. doi: 10.3934/cpaa.2022024 |
[16] |
Yanling Shi, Junxiang Xu. Quasi-periodic solutions for a class of beam equation system. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 31-53. doi: 10.3934/dcdsb.2019171 |
[17] |
Siqi Xu, Dongfeng Yan. Smooth quasi-periodic solutions for the perturbed mKdV equation. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1857-1869. doi: 10.3934/cpaa.2016019 |
[18] |
Xiaoping Yuan. Quasi-periodic solutions of nonlinear wave equations with a prescribed potential. Discrete and Continuous Dynamical Systems, 2006, 16 (3) : 615-634. doi: 10.3934/dcds.2006.16.615 |
[19] |
Meina Gao, Jianjun Liu. Quasi-periodic solutions for derivative nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2101-2123. doi: 10.3934/dcds.2012.32.2101 |
[20] |
Zhenguo Liang, Jiansheng Geng. Quasi-periodic solutions for 1D resonant beam equation. Communications on Pure and Applied Analysis, 2006, 5 (4) : 839-853. doi: 10.3934/cpaa.2006.5.839 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]