June  2017, 10(3): 625-645. doi: 10.3934/dcdss.2017031

Bifurcation analysis of the three-dimensional Hénon map

1. 

LMIB-School of Mathematics and Systems Science, Beihang University, Beijing, 100191, China

2. 

School of Mathematical and Statistical Sciences, University of Texas-Rio Grande Valley, Edinburg, TX 78539, USA

* Corresponding author: mingzhao@buaa.edu.cn

Received  January 2016 Revised  December 2016 Published  February 2017

Fund Project: This work was supported by National Science Foundation of China (No. 61134005, 11272024 and 10971009).

In this paper, we consider the dynamics of a generalized three-dimensional Hénon map. Necessary and sufficient conditions on the existence and stability of the fixed points of this system are established. By applying the center manifold theorem and bifurcation theory, we show that the system has the fold bifurcation, flip bifurcation, and Neimark-Sacker bifurcation under certain conditions. Numerical simulations are presented to not only show the consistence between examples and our theoretical analysis, but also exhibit complexity and interesting dynamical behaviors, including period-10, -13, -14, -16, -17, -20, and -34 orbits, quasi-periodic orbits, chaotic behaviors which appear and disappear suddenly, coexisting chaotic attractors. These results demonstrate relatively rich dynamical behaviors of the three-dimensional Hénon map.

Citation: Ming Zhao, Cuiping Li, Jinliang Wang, Zhaosheng Feng. Bifurcation analysis of the three-dimensional Hénon map. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 625-645. doi: 10.3934/dcdss.2017031
References:
[1]

H. L. An and Y. Chen, The function cascade synchronization scheme for discrete-time hyperchaotic systems, Commun Nonlinear Sci Numer Simulat, 14 (2009), 1494-1501.  doi: 10.1016/j.cnsns.2008.04.011.

[2]

G. Baier and M. Klein, Maximum hyperchaos in generalized Hénon maps, Phys Lett A, 151 (1990), 281-284.  doi: 10.1016/0375-9601(90)90283-T.

[3]

J. Carr, Applications of Centre Manifold Theory Springer-Verlag, New York, 1981. doi: 0-387-90577-4.

[4]

J. H. Curry, On the Hénon transformation, Commun Math Phys, 68 (1979), 129-140.  doi: 10.1007/BF01418124.

[5]

H. R. Dullin and J. D. Meiss, Generalized Hénon maps: The cubic diffeomorphisms of the plane, Phys D, 143 (2000), 262-289.  doi: 10.1016/S0167-2789(00)00105-6.

[6]

R. L. FilaliS. HammamiM. Benrejeb and P. Borne, On synchronization, anti-synchronization and hybrid synchronization of 3D discrete generalized Hénon map, Nonlinear Dynamics and Systems Theory, 12 (2012), 81-95. 

[7]

A. S. Gonchenko and S. V. Gonchenko, Variety of strange pseudohyperbolic attractors in three-dimensional generalized Hénon maps, Phys. D, 337 (2016), 43–57, arXiv: 1510. 02252v2 doi: 10.1016/j.physd.2016.07.006.

[8]

S. V. GonchenkoI. I. OvsyannikovC. Simó and D. Turaev, Three-dimensional Hénon-like maps and wild Lorenz-like attractors, Int J Bifurcat Chaos, 15 (2005), 3493-3508.  doi: 10.1142/S0218127405014180.

[9]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields Springer-Verlag, New York, 1990. doi: 10.1007/978-1-4612-1140-2.

[10]

M. Hénon, A two-dimensional mapping with a strange attractor, Commun math Phys, 50 (1976), 69-77.  doi: 10.1007/BF01608556.

[11]

D. L. Hitzl and F. Zele, An exploration of the Hénon quadratic map, Phys D, 14 (1985), 305-326.  doi: 10.1016/0167-2789(85)90092-2.

[12]

Y. A. Kuznetsov, Elements of Applied Bifurcation Theory 2nd edition, Springer-Verlag, New York, 1998.

[13]

H. K. Lam, Synchronization of generalized Hénon map using polynomial controller, Phys Lett A, 374 (2010), 552-556.  doi: 10.1016/j.physleta.2009.11.035.

[14]

E. N. Lorenz, Compound windows of the Hénon map, Phys D, 237 (2008), 1689-1704.  doi: 10.1016/j.physd.2007.11.014.

[15]

A. C. J. Luo and Y. Guo, Dynamical Systems: Discontinuity, Stochasticity and Time-Delay Springer-Verlag, New York, 2010. doi: 10.1007/978-1-4419-5754-2.

[16]

F. R. Marotto, Chaotic behavior in the Hénon mapping, Commun Math Phys, 68 (1979), 187-194.  doi: 10.1007/BF01418128.

[17]

S. Michael, Once more on Hénon map: Analysis of bifurcations, Chaos, Solitons and Fractals, 7 (1996), 2215-2234.  doi: 10.1016/S0960-0779(96)00081-1.

[18]

C. Mira, Chaotic Dynamics World Scientific, Singapore, 1987. doi: 10.1142/0413.

[19]

E. Ott, Chaos in Dynamical Systems 2nd edition, Cambridge University Press, Cambridge, 2002. doi: 10.1017/CBO9780511803260.

[20]

H. Richter, The generalized Hénon maps: Examples for higher dimensional chaos, Int J Bifurcat Chaos, 12 (2002), 1371-1384.  doi: 10.1142/S0218127402005121.

[21]

C. Robinson, Dynamical Systems: Stability, Symbolic Dynamics, and Chaos CRC Press, New York, 1999.

[22]

S. Smale, Differentiable dynamical systems, Bulletin of the American Mathematical Society, 73 (1967), 747-817.  doi: 10.1090/S0002-9904-1967-11798-1.

[23]

S. Winggins, Introduction to Applied Nonlinear Dynamical System and Chaos Springer-Verlag, New York, 1990. doi: 10.1007/978-1-4757-4067-7.

[24]

Y. J. Xue and S. Y. Yang, Synchronization of generalized Hénon map by using adaptive fuzzy controller, Chaos, Solitons and Fractals, 17 (2003), 717-722.  doi: 10.1016/S0960-0779(02)00490-3.

[25]

Z. Y. Yan, Q-S synchronization in 3D Hénon-like map and generalized Hénon map via a scalar controller, Phys Lett A, 342 (2005), 309-317.  doi: 10.1016/j.physleta.2005.04.049.

show all references

References:
[1]

H. L. An and Y. Chen, The function cascade synchronization scheme for discrete-time hyperchaotic systems, Commun Nonlinear Sci Numer Simulat, 14 (2009), 1494-1501.  doi: 10.1016/j.cnsns.2008.04.011.

[2]

G. Baier and M. Klein, Maximum hyperchaos in generalized Hénon maps, Phys Lett A, 151 (1990), 281-284.  doi: 10.1016/0375-9601(90)90283-T.

[3]

J. Carr, Applications of Centre Manifold Theory Springer-Verlag, New York, 1981. doi: 0-387-90577-4.

[4]

J. H. Curry, On the Hénon transformation, Commun Math Phys, 68 (1979), 129-140.  doi: 10.1007/BF01418124.

[5]

H. R. Dullin and J. D. Meiss, Generalized Hénon maps: The cubic diffeomorphisms of the plane, Phys D, 143 (2000), 262-289.  doi: 10.1016/S0167-2789(00)00105-6.

[6]

R. L. FilaliS. HammamiM. Benrejeb and P. Borne, On synchronization, anti-synchronization and hybrid synchronization of 3D discrete generalized Hénon map, Nonlinear Dynamics and Systems Theory, 12 (2012), 81-95. 

[7]

A. S. Gonchenko and S. V. Gonchenko, Variety of strange pseudohyperbolic attractors in three-dimensional generalized Hénon maps, Phys. D, 337 (2016), 43–57, arXiv: 1510. 02252v2 doi: 10.1016/j.physd.2016.07.006.

[8]

S. V. GonchenkoI. I. OvsyannikovC. Simó and D. Turaev, Three-dimensional Hénon-like maps and wild Lorenz-like attractors, Int J Bifurcat Chaos, 15 (2005), 3493-3508.  doi: 10.1142/S0218127405014180.

[9]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields Springer-Verlag, New York, 1990. doi: 10.1007/978-1-4612-1140-2.

[10]

M. Hénon, A two-dimensional mapping with a strange attractor, Commun math Phys, 50 (1976), 69-77.  doi: 10.1007/BF01608556.

[11]

D. L. Hitzl and F. Zele, An exploration of the Hénon quadratic map, Phys D, 14 (1985), 305-326.  doi: 10.1016/0167-2789(85)90092-2.

[12]

Y. A. Kuznetsov, Elements of Applied Bifurcation Theory 2nd edition, Springer-Verlag, New York, 1998.

[13]

H. K. Lam, Synchronization of generalized Hénon map using polynomial controller, Phys Lett A, 374 (2010), 552-556.  doi: 10.1016/j.physleta.2009.11.035.

[14]

E. N. Lorenz, Compound windows of the Hénon map, Phys D, 237 (2008), 1689-1704.  doi: 10.1016/j.physd.2007.11.014.

[15]

A. C. J. Luo and Y. Guo, Dynamical Systems: Discontinuity, Stochasticity and Time-Delay Springer-Verlag, New York, 2010. doi: 10.1007/978-1-4419-5754-2.

[16]

F. R. Marotto, Chaotic behavior in the Hénon mapping, Commun Math Phys, 68 (1979), 187-194.  doi: 10.1007/BF01418128.

[17]

S. Michael, Once more on Hénon map: Analysis of bifurcations, Chaos, Solitons and Fractals, 7 (1996), 2215-2234.  doi: 10.1016/S0960-0779(96)00081-1.

[18]

C. Mira, Chaotic Dynamics World Scientific, Singapore, 1987. doi: 10.1142/0413.

[19]

E. Ott, Chaos in Dynamical Systems 2nd edition, Cambridge University Press, Cambridge, 2002. doi: 10.1017/CBO9780511803260.

[20]

H. Richter, The generalized Hénon maps: Examples for higher dimensional chaos, Int J Bifurcat Chaos, 12 (2002), 1371-1384.  doi: 10.1142/S0218127402005121.

[21]

C. Robinson, Dynamical Systems: Stability, Symbolic Dynamics, and Chaos CRC Press, New York, 1999.

[22]

S. Smale, Differentiable dynamical systems, Bulletin of the American Mathematical Society, 73 (1967), 747-817.  doi: 10.1090/S0002-9904-1967-11798-1.

[23]

S. Winggins, Introduction to Applied Nonlinear Dynamical System and Chaos Springer-Verlag, New York, 1990. doi: 10.1007/978-1-4757-4067-7.

[24]

Y. J. Xue and S. Y. Yang, Synchronization of generalized Hénon map by using adaptive fuzzy controller, Chaos, Solitons and Fractals, 17 (2003), 717-722.  doi: 10.1016/S0960-0779(02)00490-3.

[25]

Z. Y. Yan, Q-S synchronization in 3D Hénon-like map and generalized Hénon map via a scalar controller, Phys Lett A, 342 (2005), 309-317.  doi: 10.1016/j.physleta.2005.04.049.

Figure 1.  The stability region and bifurcation region of system (2) in the (b, a)-plane.
Figure 2.  (A)-(B) bifurcation diagrams of system (2) in the (a, x) plane: (A) b = −0.6, and (B) b = 0.4; (C) bifurcation diagram of system (2) in the (b, x) plane with b ∈ (−0.8, 0.8) and a = 0.2. Here, the fold bifurcation, flip bifurcation and Neimark-Sacker bifurcation are labeled as "SN", "PD" and "NS", respectively.
Figure 3.  Bifurcation diagrams of system (2) in the threedimensional (a, b, x) space.
Figure 4.  (A) bifurcation diagram of system (2) in the (a, x) plane (a ∈ (0, 0.4)) for b = −0.6; (B) maximum Lyapunov exponent corresponding to (A); (C) the local amplified bifurcation diagram of (A) for a ∈ (0.22, 0.32).
Figure 5.  (A)-(H) phase portraits for various values of a corresponding to Figure 4 (A).
Figure 6.  (A)-(C) phase portraits for a = 0.385 in the (x, y) plane, the (x, z) plane, and the (y, z) plane.
Figure 7.  (A) bifurcation diagram of system (2) in the (a, x) plane (a ∈ (0, 1)) for b = 0.4; (B) maximum Lyapunov exponent corresponding to (A); (C) the local amplified bifurcation diagram of (A) for a ∈ (0.81, 0.85); (D) maximum Lyapunov exponent corresponding to (C); (E)-(F) chaotic attractors for a = 0.835 and a = 0.8445, respectively.
Figure 8.  (A) bifurcation diagram of system (2) in the (b, x) plane with b ∈ (−0.8, 0.8) and a = 0.23; (B) maximum Lyapunov exponent corresponding to (A); (C) the local amplified bifurcation diagram of (A) for b ∈ (−0.75, −0.5); (D) maximum Lyapunov exponent corresponding to (C); (E) the local amplified bifurcation diagram of (A) for b ∈ (0.64, 0.7); (F) maximum Lyapunov exponent corresponding to (E).
Figure 9.  In (A)-(C), phase portraits corresponding to Figure 8 (C): (A) b = −0.72, (B) b = −0.6, and (C) b = −0.53. In (D)-(F), phase portraits corresponding to Figure 8 (E): (D) b = 0.66, (E) b = 0.675, and (F) b = 0.691.
[1]

Anna Lisa Amadori. Global bifurcation for the Hénon problem. Communications on Pure and Applied Analysis, 2020, 19 (10) : 4797-4816. doi: 10.3934/cpaa.2020212

[2]

Yunshyong Chow, Sophia Jang. Neimark-Sacker bifurcations in a host-parasitoid system with a host refuge. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 1713-1728. doi: 10.3934/dcdsb.2016019

[3]

Zhiqin Qiao, Deming Zhu, Qiuying Lu. Bifurcation of a heterodimensional cycle with weak inclination flip. Discrete and Continuous Dynamical Systems - B, 2012, 17 (3) : 1009-1025. doi: 10.3934/dcdsb.2012.17.1009

[4]

Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032

[5]

Andrus Giraldo, Bernd Krauskopf, Hinke M. Osinga. Computing connecting orbits to infinity associated with a homoclinic flip bifurcation. Journal of Computational Dynamics, 2020, 7 (2) : 489-510. doi: 10.3934/jcd.2020020

[6]

Jean-François Rault. A bifurcation for a generalized Burgers' equation in dimension one. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 683-706. doi: 10.3934/dcdss.2012.5.683

[7]

Patrick M. Fitzpatrick, Jacobo Pejsachowicz. Branching and bifurcation. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 1955-1975. doi: 10.3934/dcdss.2019127

[8]

Jungho Park. Bifurcation and stability of the generalized complex Ginzburg--Landau equation. Communications on Pure and Applied Analysis, 2008, 7 (5) : 1237-1253. doi: 10.3934/cpaa.2008.7.1237

[9]

Gian-Italo Bischi, Laura Gardini, Fabio Tramontana. Bifurcation curves in discontinuous maps. Discrete and Continuous Dynamical Systems - B, 2010, 13 (2) : 249-267. doi: 10.3934/dcdsb.2010.13.249

[10]

Ryan T. Botts, Ale Jan Homburg, Todd R. Young. The Hopf bifurcation with bounded noise. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 2997-3007. doi: 10.3934/dcds.2012.32.2997

[11]

Matteo Franca, Russell Johnson, Victor Muñoz-Villarragut. On the nonautonomous Hopf bifurcation problem. Discrete and Continuous Dynamical Systems - S, 2016, 9 (4) : 1119-1148. doi: 10.3934/dcdss.2016045

[12]

Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173

[13]

John Guckenheimer, Hinke M. Osinga. The singular limit of a Hopf bifurcation. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 2805-2823. doi: 10.3934/dcds.2012.32.2805

[14]

Carmen Núñez, Rafael Obaya. A non-autonomous bifurcation theory for deterministic scalar differential equations. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 701-730. doi: 10.3934/dcdsb.2008.9.701

[15]

José Caicedo, Alfonso Castro, Arturo Sanjuán. Bifurcation at infinity for a semilinear wave equation with non-monotone nonlinearity. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 1857-1865. doi: 10.3934/dcds.2017078

[16]

Brian Ryals, Robert J. Sacker. Bifurcation in the almost periodic $ 2 $D Ricker map. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1263-1284. doi: 10.3934/dcdsb.2021089

[17]

Andrus Giraldo, Neil G. R. Broderick, Bernd Krauskopf. Chaotic switching in driven-dissipative Bose-Hubbard dimers: When a flip bifurcation meets a T-point in $ \mathbb{R}^4 $. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 4023-4075. doi: 10.3934/dcdsb.2021217

[18]

Rafael Labarca, Solange Aranzubia. A formula for the boundary of chaos in the lexicographical scenario and applications to the bifurcation diagram of the standard two parameter family of quadratic increasing-increasing Lorenz maps. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 1745-1776. doi: 10.3934/dcds.2018072

[19]

Christian Pötzsche. Nonautonomous bifurcation of bounded solutions II: A Shovel-Bifurcation pattern. Discrete and Continuous Dynamical Systems, 2011, 31 (3) : 941-973. doi: 10.3934/dcds.2011.31.941

[20]

Hooton Edward, Balanov Zalman, Krawcewicz Wieslaw, Rachinskii Dmitrii. Sliding Hopf bifurcation in interval systems. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3545-3566. doi: 10.3934/dcds.2017152

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (253)
  • HTML views (100)
  • Cited by (1)

[Back to Top]