\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Characterizations of Sobolev functions that vanish on a part of the boundary

  • * Corresponding author: Moritz Egert

    * Corresponding author: Moritz Egert 

The first author was supported by a public grant as part of the FMJH. The second author was supported by "Studienstiftung des deutschen Volkes"

Abstract Full Text(HTML) Figure(1) Related Papers Cited by
  • Let $\Omega$ be a bounded domain in $\mathbb{R}^n$ with a Sobolev extension property around the complement of a closed part $D$ of its boundary. We prove that a function $u \in {\rm{W}}^{1,p}(\Omega)$ vanishes on $D$ in the sense of an interior trace if and only if it can be approximated within ${\rm{W}}^{1,p}(\Omega)$ by smooth functions with support away from $D$. We also review several other equivalent characterizations, so to draw a rather complete picture of these Sobolev functions vanishing on a part of the boundary.

    Mathematics Subject Classification: Primary: 46E35, 31B25; Secondary: 26B30.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The dyadic 'skeleton' of $\Omega$ is obtained from the square $[0,1] \times [1,2]$ by iteratively attaching a total number of $2^j$ disjoint squares of side length $2^{-j}$ at the bottom of the existing construction. The domain $\Omega$ is then constructed by blowing up the line segments to appropriately sized open rectangles

  • [1] D. R. Adams and L. I. Hedberg, Function Spaces and Potential Theory, Grundlehren der Mathematischen Wissenschaften, vol. 314, Springer, Berlin, 1996.
    [2] K. BrewsterD. MitreaI. Mitrea and M. Mitrea, Extending Sobolev functions with partially vanishing traces from locally (ε, δ)-domains and applications to mixed boundary problems, J. Funct. Anal., 266 (2014), 4314-4421.  doi: 10.1016/j.jfa.2014.02.001.
    [3] M. EgertR. Haller-Dintelmann and J. Rehberg, Hardy's inequality for functions vanishing on a part of the boundary, Potential Anal., 43 (2015), 49-78.  doi: 10.1007/s11118-015-9463-8.
    [4] A. F. M. ter Elst and J. Rehberg, Hölder estimates for second-order operators on domains with rough boundary, Adv. Differential Equations, 20 (2015), 299-360. 
    [5] L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, CRC Press, Boca Raton FL, 1992.
    [6] H. Federer, Geometric Measure Theory, Die Grundlehren der Mathematischen Wissenschaften, vol. 153, Springer, New York, 1969.
    [7] M. Giaquinta, G. Modica and J. Souček, Cartesian Currents in the Calculus of Variations Ⅰ. Results in Mathematics and Related Areas. 3rd Series, vol. 37, Springer-Verlag, Berlin, 1998.
    [8] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer, Berlin, 2001.
    [9] P. Haj laszP. Koskela and H. Tuominen, Sobolev embeddings, extensions and measure density condition, J. Funct. Anal., 254 (2008), 1217-1234.  doi: 10.1016/j.jfa.2007.11.020.
    [10] R. Haller-Dintelmann and J. Rehberg, Maximal parabolic regularity for divergence operators including mixed boundary conditions, J. Differential Equations, 247 (2009), 1354-1396.  doi: 10.1016/j.jde.2009.06.001.
    [11] A. Jonsson and H. Wallin, Function spaces on subsets of $\mathbb{R}^N$, Math. Rep., (1984), 2. 
    [12] D. Swanson and W. P. Ziemer, Sobolev functions whose inner trace at the boundary is zero, Ark. Mat., 37 (1999), 373-380.  doi: 10.1007/BF02412221.
    [13] J. Yeh, Real Analysis, World Scientific Publishing, Hackensack NJ, 2006.
    [14] W. P. Ziemer, Weakly Differentiable Functions, Graduate Texts in Mathematics, vol. 120, Springer, New York, 1989.
  • 加载中

Figures(1)

SHARE

Article Metrics

HTML views(373) PDF downloads(125) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return