We consider a system of non-linear reaction-diffusion equations in a domain consisting of two bulk regions separated by a thin layer with periodic structure. The thickness of the layer is of order $\epsilon$, and the equations inside the layer depend on the parameter $\epsilon$ and an additional parameter $\gamma \in [-1,1)$, which describes the size of the diffusion in the layer. We derive effective models for the limit $\epsilon \to 0 $, when the layer reduces to an interface $\Sigma$ between the two bulk domains. The effective solution is continuous across $\Sigma$ for all $\gamma \in [-1,1)$. For $\gamma \in (-1,1)$, the jump in the normal flux is given by a non-linear ordinary differential equation on $\Sigma$. In the critical case $\gamma = -1$, a dynamic transmission condition of Wentzell-type arises at the interface $\Sigma$.
Citation: |
Figure 1. The microscopic domain containing the thin layer $\Omega _\epsilon^ M$ with periodic structure. The heterogeneous structure of the membrane is modeled by the diffusion-coefficient $D^M$. In biology such a layer is e. g., the stratum corneum which consists of flattened cells (corneocytes) surrounded by lipid components
[1] |
T. Arbogast, J. Douglas and U. Hornung, Derivation of the double porosity model of single phase flow via homogenization theory, SIAM J. Math. Anal., 21 (1990), 823-836.
doi: 10.1137/0521046.![]() ![]() |
[2] |
A. Bourgeat, O. Gipouloux and E. Marušić-Paloka, Modelling of an underground waste disposal site by upscaling, Math. Meth. Appl. Sci., 27 (2004), 381-403.
doi: 10.1002/mma.459.![]() ![]() |
[3] |
H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, 2011.
doi: 10.1007/978-0-387-70914-7.![]() ![]() |
[4] |
J. R. Cannon and G. H. Meyer, On diffusion in a fractured medium, SIAM J. Appl. Math., 20 (1971), 434-448.
doi: 10.1137/0120047.![]() ![]() |
[5] |
D. Cioranescu, A. Damlamian and G. Griso, Periodic unfolding and homogenization, C. R. Acad. Sci. Paris Sér. 1, 335 (2002), 99-104.
doi: 10.1016/S1631-073X(02)02429-9.![]() ![]() |
[6] |
P. Donato and A. Piatnitski, On the effective interfacial resistance through rough surfaces, Commun. Pure Appl. Anal., 9 (2010), 1295-1310.
![]() |
[7] |
M. Gahn and M. Neuss-Radu, A characterization of relatively compact sets in Lp(Ω, B), Stud. Univ. Babeş-Bolyai Math., 61 (2016), 279-290.
![]() ![]() |
[8] |
G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Springer Monographs in Mathematics, 2011.
![]() |
[9] |
G. Geymonat, S. Hendili, F. Krasucki and M. Vidrascu, Matched asymptotic expansion method for an homogenized interface model, Math. Models, Methods Appl. Sci., 24 (2014), 573-597.
doi: 10.1142/S0218202513500607.![]() ![]() |
[10] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 1983.
![]() |
[11] |
M. Liero, Passing from bulk to bulk-surface evolution in the allen-cahn equation, Nonlinear Differential Equations and Applications NoDEA, 20 (2013), 919-942.
doi: 10.1007/s00030-012-0189-7.![]() ![]() |
[12] |
S. Marušić and E. Marušić-Paloka, Two-scale convergence for thin domains and its applications to some lower-dimensional mmodel in fluid mechanics, Asymptotic Analysis, 23 (2000), 23-58.
![]() |
[13] |
A. A. Moussa and L. Zlaï ji, Homogenization of non-linear variational problems with thin inclusions, Math. J. Okayama Univ., 54 (2012), 97-131.
![]() |
[14] |
M. Neuss-Radu, Mathematical Modelling and Multi-Scale Analysis of Transport Processes Through Membranes, Habilitation Thesis, University of Heidelberg, 2017.
![]() |
[15] |
M. Neuss-Radu and W. Jäger, Effective transmission conditions for reaction-diffusion processes in domains separated by an interface, SIAM J. Math. Anal., 39 (2007), 687-720.
doi: 10.1137/060665452.![]() ![]() |
[16] |
M. Neuss-Radu and W. J. S. Ludwig, Multiscale analysis and simulation of a reaction-diffusion problem with transmission conditions, Nonlinear Analysis: Real World Applications, 11 (2010), 4572-4585.
doi: 10.1016/j.nonrwa.2008.11.024.![]() ![]() |
[17] |
M. A. Peter and M. Böhm, Different choices of scaling in homogenization of diffusion and interfacial exchange in a porous medium, Math. Meth. Appl. Sci., 31 (2008), 1257-1282.
doi: 10.1002/mma.966.![]() ![]() |
[18] |
M. Shinbrot, Water waves over periodic bottoms in three dimensions, J. Inst. Maths. Applics., 25 (1980), 367-385.
doi: 10.1093/imamat/25.4.367.![]() ![]() |
[19] |
A. D. Venttsel, On boundary conditions for multidimensional diffusion processes, Teor. Veroyatnost. i Primenen., 4 (1959), 172-185.
doi: 10.1137/1104014.![]() ![]() |
[20] |
J. Wloka, Partielle Differentialgleichungen, B. G. Teubner, 1982.
![]() |
The microscopic domain containing the thin layer