\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Derivation of effective transmission conditions for domains separated by a membrane for different scaling of membrane diffusivity

  • * Corresponding author: Markus Gahn

    * Corresponding author: Markus Gahn 
Abstract Full Text(HTML) Figure(1) Related Papers Cited by
  • We consider a system of non-linear reaction-diffusion equations in a domain consisting of two bulk regions separated by a thin layer with periodic structure. The thickness of the layer is of order $\epsilon$, and the equations inside the layer depend on the parameter $\epsilon$ and an additional parameter $\gamma \in [-1,1)$, which describes the size of the diffusion in the layer. We derive effective models for the limit $\epsilon \to 0 $, when the layer reduces to an interface $\Sigma$ between the two bulk domains. The effective solution is continuous across $\Sigma$ for all $\gamma \in [-1,1)$. For $\gamma \in (-1,1)$, the jump in the normal flux is given by a non-linear ordinary differential equation on $\Sigma$. In the critical case $\gamma = -1$, a dynamic transmission condition of Wentzell-type arises at the interface $\Sigma$.

    Mathematics Subject Classification: Primary: 35K57, 35B27, 80M40.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The microscopic domain containing the thin layer $\Omega _\epsilon^ M$ with periodic structure. The heterogeneous structure of the membrane is modeled by the diffusion-coefficient $D^M$. In biology such a layer is e. g., the stratum corneum which consists of flattened cells (corneocytes) surrounded by lipid components

  • [1] T. ArbogastJ. Douglas and U. Hornung, Derivation of the double porosity model of single phase flow via homogenization theory, SIAM J. Math. Anal., 21 (1990), 823-836.  doi: 10.1137/0521046.
    [2] A. BourgeatO. Gipouloux and E. Marušić-Paloka, Modelling of an underground waste disposal site by upscaling, Math. Meth. Appl. Sci., 27 (2004), 381-403.  doi: 10.1002/mma.459.
    [3] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, 2011. doi: 10.1007/978-0-387-70914-7.
    [4] J. R. Cannon and G. H. Meyer, On diffusion in a fractured medium, SIAM J. Appl. Math., 20 (1971), 434-448.  doi: 10.1137/0120047.
    [5] D. CioranescuA. Damlamian and G. Griso, Periodic unfolding and homogenization, C. R. Acad. Sci. Paris Sér. 1, 335 (2002), 99-104.  doi: 10.1016/S1631-073X(02)02429-9.
    [6] P. Donato and A. Piatnitski, On the effective interfacial resistance through rough surfaces, Commun. Pure Appl. Anal., 9 (2010), 1295-1310. 
    [7] M. Gahn and M. Neuss-Radu, A characterization of relatively compact sets in Lp(Ω, B), Stud. Univ. Babeş-Bolyai Math., 61 (2016), 279-290. 
    [8] G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Springer Monographs in Mathematics, 2011.
    [9] G. GeymonatS. HendiliF. Krasucki and M. Vidrascu, Matched asymptotic expansion method for an homogenized interface model, Math. Models, Methods Appl. Sci., 24 (2014), 573-597.  doi: 10.1142/S0218202513500607.
    [10] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 1983.
    [11] M. Liero, Passing from bulk to bulk-surface evolution in the allen-cahn equation, Nonlinear Differential Equations and Applications NoDEA, 20 (2013), 919-942.  doi: 10.1007/s00030-012-0189-7.
    [12] S. Marušić and E. Marušić-Paloka, Two-scale convergence for thin domains and its applications to some lower-dimensional mmodel in fluid mechanics, Asymptotic Analysis, 23 (2000), 23-58. 
    [13] A. A. Moussa and L. Zlaï ji, Homogenization of non-linear variational problems with thin inclusions, Math. J. Okayama Univ., 54 (2012), 97-131. 
    [14] M. Neuss-Radu, Mathematical Modelling and Multi-Scale Analysis of Transport Processes Through Membranes, Habilitation Thesis, University of Heidelberg, 2017.
    [15] M. Neuss-Radu and W. Jäger, Effective transmission conditions for reaction-diffusion processes in domains separated by an interface, SIAM J. Math. Anal., 39 (2007), 687-720.  doi: 10.1137/060665452.
    [16] M. Neuss-Radu and W. J. S. Ludwig, Multiscale analysis and simulation of a reaction-diffusion problem with transmission conditions, Nonlinear Analysis: Real World Applications, 11 (2010), 4572-4585.  doi: 10.1016/j.nonrwa.2008.11.024.
    [17] M. A. Peter and M. Böhm, Different choices of scaling in homogenization of diffusion and interfacial exchange in a porous medium, Math. Meth. Appl. Sci., 31 (2008), 1257-1282.  doi: 10.1002/mma.966.
    [18] M. Shinbrot, Water waves over periodic bottoms in three dimensions, J. Inst. Maths. Applics., 25 (1980), 367-385.  doi: 10.1093/imamat/25.4.367.
    [19] A. D. Venttsel, On boundary conditions for multidimensional diffusion processes, Teor. Veroyatnost. i Primenen., 4 (1959), 172-185.  doi: 10.1137/1104014.
    [20] J. Wloka, Partielle Differentialgleichungen, B. G. Teubner, 1982.
  • 加载中

Figures(1)

SHARE

Article Metrics

HTML views(266) PDF downloads(115) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return