
-
Previous Article
On the existence of weak solutions of an unsteady p-Laplace thermistor system with strictly monotone electrical conductivities
- DCDS-S Home
- This Issue
-
Next Article
On the geometry of the p-Laplacian operator
Effective acoustic properties of a meta-material consisting of small Helmholtz resonators
Technische Universität Dortmund, Fakultät für Mathematik, Vogelpothsweg 87,44227 Dortmund, Germany |
We investigate the acoustic properties of meta-materials that are inspired by sound-absorbing structures. We show that it is possible to construct meta-materials with frequency-dependent effective properties, with large and/or negative permittivities. Mathematically, we investigate solutions $u^\varepsilon : \Omega_\varepsilon \to \mathbb{R}$ to a Helmholtz equation in the limit $\varepsilon \to 0$ with the help of two-scale convergence. The domain $\Omega_\varepsilon $ is obtained by removing from an open set $\Omega\subset \mathbb{R}^n$ in a periodic fashion a large number (order $\varepsilon ^{-n}$) of small resonators (order $\varepsilon $). The special properties of the meta-material are obtained through sub-scale structures in the perforations.
References:
[1] |
G. Allaire,
Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518.
doi: 10.1137/0523084. |
[2] |
G. Allaire and M. Briane,
Multiscale convergence and reiterated homogenisation, Proc. Roy. Soc. Edinburgh Sect. A, 126 (1996), 297-342.
doi: 10.1017/S0308210500022757. |
[3] |
G. Allaire and C. Conca,
Bloch wave homogenization and spectral asymptotic analysis, J. Math. Pures Appl., 77 (1998), 153-208.
doi: 10.1016/S0021-7824(98)80068-8. |
[4] |
M. Bellieud and G. Bouchitté,
Homogenization of elliptic problems in a fiber reinforced structure. Nonlocal effects, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 26 (1998), 407-436.
|
[5] |
M. Bellieud and I. Gruais,
Homogenization of an elastic material reinforced by very stiff or heavy fibers. Non-local effects. Memory effects, J. Math. Pures Appl., 84 (2005), 55-96.
doi: 10.1016/j.matpur.2004.02.003. |
[6] |
G. Bouchitté and M. Bellieud,
Homogenization of a soft elastic material reinforced by fibers, Asymptot. Anal., 32 (2002), 153-183.
|
[7] |
G. Bouchitté, C. Bourel and D. Felbacq,
Homogenization of the 3D Maxwell system near resonances and artificial magnetism, C. R. Math. Acad. Sci. Paris, 347 (2009), 571-576.
|
[8] |
G. Bouchitté and D. Felbacq, Low frequency scattering by a set of parallel metallic rods, In Mathematical and numerical aspects of wave propagation (Santiago de Compostela, 2000), pages 226-230. SIAM, Philadelphia, PA, 2000. |
[9] |
G. Bouchitté and D. Felbacq,
Homogenization near resonances and artificial magnetism from dielectrics, C. R. Math. Acad. Sci. Paris, 339 (2004), 377-382.
|
[10] |
G. Bouchitté and D. Felbacq,
Homogenization of a wire photonic crystal: the case of small volume fraction, SIAM J. Appl. Math., 66 (2006), 2061-2084.
|
[11] |
G. Bouchitté and B. Schweizer,
Homogenization of Maxwell's equations in a split ring geometry, Multiscale Model. Simul., 8 (2010), 717-750.
|
[12] |
G. Bouchitté and B. Schweizer,
Plasmonic waves allow perfect transmission through subwavelength metallic gratings, Netw. Heterog. Media, 8 (2013), 857-878.
|
[13] |
Y. Chen and R. Lipton,
Tunable double negative band structure from non-magnetic coated rods, New Journal of Physics, 12 (2010), 083010.
doi: 10.1088/1367-2630/12/8/083010. |
[14] |
K. D. Cherednichenko, V. P. Smyshlyaev and V. V. Zhikov,
Non-local homogenized limits for composite media with highly anisotropic periodic fibres, Proc. Roy. Soc. Edinburgh Sect. A, 136 (2006), 87-114.
doi: 10.1017/S0308210500004455. |
[15] |
V. Chiadò Piat and M. Codegone,
Scattering problems in a domain with small holes, RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 97 (2003), 447-454.
|
[16] |
D. Cioranescu and F. Murat, A strange term coming from nowhere, In Topics in the mathematical modelling of composite materials, volume 31 of Progr. Nonlinear Differential Equations Appl. , pages 45-93. Birkhäuser Boston, Boston, MA, 1997.
doi: 10.1007/978-1-4612-2032-9_4. |
[17] |
D. Cioranescu and J. Saint Jean Paulin,
Homogenization in open sets with holes, J. Math. Anal. Appl., 71 (1979), 590-607.
doi: 10.1016/0022-247X(79)90211-7. |
[18] |
D. Cioranescu and J. Saint Jean Paulin, Homogenization of Reticulated Structures, volume 136 of Applied Mathematical Sciences, Springer-Verlag, New York, 1999. |
[19] |
C. Dörlemann, M. Heida and B. Schweizer, Transmission conditions for the Helmholtz equation in perforated domains, Vietnam J. Math. , 2016.
doi: 10.1007/s10013-016-0222-y. |
[20] |
S. Guenneau, F. Zolla and A. Nicolet,
Homogenization of 3D finite photonic crystals with heterogeneous permittivity and permeability, Waves Random Complex Media, 17 (2007), 653-697.
doi: 10.1080/17455030701607013. |
[21] |
V. V. Jikov, S. M. Kozlov and O. A. Oleĭnik, Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, Berlin, 1994. Translated from the Russian by G. A. Yosifian[G. A. Iosifyan].
doi: 10.1007/978-3-642-84659-5. |
[22] |
R. Kohn and S. Shipman,
Magnetism and homogenization of micro-resonators, Multiscale Modeling & Simulation, 7 (2007), 62-92.
|
[23] |
R. V. Kohn, J. Lu, B. Schweizer and M. I. Weinstein,
A variational perspective on cloaking by anomalous localized resonance, Comm. Math. Phys., 328 (2014), 1-27.
doi: 10.1007/s00220-014-1943-y. |
[24] |
A. Lamacz and B. Schweizer,
Effective Maxwell equations in a geometry with flat rings of arbitrary shape, SIAM J. Math. Anal., 45 (2013), 1460-1494.
doi: 10.1137/120874321. |
[25] |
A. Lamacz and B. Schweizer,
A negative index meta-material for Maxwell's equations, SIAM J. Math. Anal., 48 (2016), 4155-4174.
doi: 10.1137/16M1064246. |
[26] |
V. A. Marchenko and E. Y. Khruslov, Homogenization of Partial Differential Equations, volume 46 of Progress in Mathematical Physics, Birkhäuser Boston, Inc. , Boston, MA, 2006. Translated from the 2005 Russian original by M. Goncharenko and D. Shepelsky. |
[27] |
G. Nguetseng,
A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., 20 (1989), 608-623.
doi: 10.1137/0520043. |
[28] |
S. O'Brien and J. Pendry,
Magnetic activity at infrared frequencies in structured metallic photonic crystals, J. Phys. Condens. Mat., 14 (2002), 6383-6394.
|
[29] |
J. Pendry,
Negative refraction makes a perfect lens, Phys. Rev. Lett., 85 (2000), p3966.
doi: 10.1103/PhysRevLett.85.3966. |
[30] |
E. Sánchez-Palencia, Nonhomogeneous Media and Vibration Theory, volume 127 of Lecture Notes in Physics, Springer-Verlag, Berlin, 1980. |
[31] |
B. Schweizer,
The low-frequency spectrum of small Helmholtz resonators, Proc. A., 0339 (2014), 20140339.
doi: 10.1098/rspa.2014.0339. |
[32] |
B. Schweizer, Resonance meets homogenization -Construction of meta-materials with astonishing properties, Jahresberichte der DMV, 2016.
doi: 10.1365/s13291-016-0153-2. |
[33] |
V. Veselago,
The electrodynamics of substances with simultaneously negative values of ε and μ, Soviet Physics Uspekhi, 10 (1968), 509-514.
|
[34] |
V. V. Zhikov,
Two-scale convergence and spectral problems of homogenization, Tr. Semin. im. Petrovskogo I. G., 22 (2002), 105-120.
|
show all references
References:
[1] |
G. Allaire,
Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518.
doi: 10.1137/0523084. |
[2] |
G. Allaire and M. Briane,
Multiscale convergence and reiterated homogenisation, Proc. Roy. Soc. Edinburgh Sect. A, 126 (1996), 297-342.
doi: 10.1017/S0308210500022757. |
[3] |
G. Allaire and C. Conca,
Bloch wave homogenization and spectral asymptotic analysis, J. Math. Pures Appl., 77 (1998), 153-208.
doi: 10.1016/S0021-7824(98)80068-8. |
[4] |
M. Bellieud and G. Bouchitté,
Homogenization of elliptic problems in a fiber reinforced structure. Nonlocal effects, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 26 (1998), 407-436.
|
[5] |
M. Bellieud and I. Gruais,
Homogenization of an elastic material reinforced by very stiff or heavy fibers. Non-local effects. Memory effects, J. Math. Pures Appl., 84 (2005), 55-96.
doi: 10.1016/j.matpur.2004.02.003. |
[6] |
G. Bouchitté and M. Bellieud,
Homogenization of a soft elastic material reinforced by fibers, Asymptot. Anal., 32 (2002), 153-183.
|
[7] |
G. Bouchitté, C. Bourel and D. Felbacq,
Homogenization of the 3D Maxwell system near resonances and artificial magnetism, C. R. Math. Acad. Sci. Paris, 347 (2009), 571-576.
|
[8] |
G. Bouchitté and D. Felbacq, Low frequency scattering by a set of parallel metallic rods, In Mathematical and numerical aspects of wave propagation (Santiago de Compostela, 2000), pages 226-230. SIAM, Philadelphia, PA, 2000. |
[9] |
G. Bouchitté and D. Felbacq,
Homogenization near resonances and artificial magnetism from dielectrics, C. R. Math. Acad. Sci. Paris, 339 (2004), 377-382.
|
[10] |
G. Bouchitté and D. Felbacq,
Homogenization of a wire photonic crystal: the case of small volume fraction, SIAM J. Appl. Math., 66 (2006), 2061-2084.
|
[11] |
G. Bouchitté and B. Schweizer,
Homogenization of Maxwell's equations in a split ring geometry, Multiscale Model. Simul., 8 (2010), 717-750.
|
[12] |
G. Bouchitté and B. Schweizer,
Plasmonic waves allow perfect transmission through subwavelength metallic gratings, Netw. Heterog. Media, 8 (2013), 857-878.
|
[13] |
Y. Chen and R. Lipton,
Tunable double negative band structure from non-magnetic coated rods, New Journal of Physics, 12 (2010), 083010.
doi: 10.1088/1367-2630/12/8/083010. |
[14] |
K. D. Cherednichenko, V. P. Smyshlyaev and V. V. Zhikov,
Non-local homogenized limits for composite media with highly anisotropic periodic fibres, Proc. Roy. Soc. Edinburgh Sect. A, 136 (2006), 87-114.
doi: 10.1017/S0308210500004455. |
[15] |
V. Chiadò Piat and M. Codegone,
Scattering problems in a domain with small holes, RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 97 (2003), 447-454.
|
[16] |
D. Cioranescu and F. Murat, A strange term coming from nowhere, In Topics in the mathematical modelling of composite materials, volume 31 of Progr. Nonlinear Differential Equations Appl. , pages 45-93. Birkhäuser Boston, Boston, MA, 1997.
doi: 10.1007/978-1-4612-2032-9_4. |
[17] |
D. Cioranescu and J. Saint Jean Paulin,
Homogenization in open sets with holes, J. Math. Anal. Appl., 71 (1979), 590-607.
doi: 10.1016/0022-247X(79)90211-7. |
[18] |
D. Cioranescu and J. Saint Jean Paulin, Homogenization of Reticulated Structures, volume 136 of Applied Mathematical Sciences, Springer-Verlag, New York, 1999. |
[19] |
C. Dörlemann, M. Heida and B. Schweizer, Transmission conditions for the Helmholtz equation in perforated domains, Vietnam J. Math. , 2016.
doi: 10.1007/s10013-016-0222-y. |
[20] |
S. Guenneau, F. Zolla and A. Nicolet,
Homogenization of 3D finite photonic crystals with heterogeneous permittivity and permeability, Waves Random Complex Media, 17 (2007), 653-697.
doi: 10.1080/17455030701607013. |
[21] |
V. V. Jikov, S. M. Kozlov and O. A. Oleĭnik, Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, Berlin, 1994. Translated from the Russian by G. A. Yosifian[G. A. Iosifyan].
doi: 10.1007/978-3-642-84659-5. |
[22] |
R. Kohn and S. Shipman,
Magnetism and homogenization of micro-resonators, Multiscale Modeling & Simulation, 7 (2007), 62-92.
|
[23] |
R. V. Kohn, J. Lu, B. Schweizer and M. I. Weinstein,
A variational perspective on cloaking by anomalous localized resonance, Comm. Math. Phys., 328 (2014), 1-27.
doi: 10.1007/s00220-014-1943-y. |
[24] |
A. Lamacz and B. Schweizer,
Effective Maxwell equations in a geometry with flat rings of arbitrary shape, SIAM J. Math. Anal., 45 (2013), 1460-1494.
doi: 10.1137/120874321. |
[25] |
A. Lamacz and B. Schweizer,
A negative index meta-material for Maxwell's equations, SIAM J. Math. Anal., 48 (2016), 4155-4174.
doi: 10.1137/16M1064246. |
[26] |
V. A. Marchenko and E. Y. Khruslov, Homogenization of Partial Differential Equations, volume 46 of Progress in Mathematical Physics, Birkhäuser Boston, Inc. , Boston, MA, 2006. Translated from the 2005 Russian original by M. Goncharenko and D. Shepelsky. |
[27] |
G. Nguetseng,
A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., 20 (1989), 608-623.
doi: 10.1137/0520043. |
[28] |
S. O'Brien and J. Pendry,
Magnetic activity at infrared frequencies in structured metallic photonic crystals, J. Phys. Condens. Mat., 14 (2002), 6383-6394.
|
[29] |
J. Pendry,
Negative refraction makes a perfect lens, Phys. Rev. Lett., 85 (2000), p3966.
doi: 10.1103/PhysRevLett.85.3966. |
[30] |
E. Sánchez-Palencia, Nonhomogeneous Media and Vibration Theory, volume 127 of Lecture Notes in Physics, Springer-Verlag, Berlin, 1980. |
[31] |
B. Schweizer,
The low-frequency spectrum of small Helmholtz resonators, Proc. A., 0339 (2014), 20140339.
doi: 10.1098/rspa.2014.0339. |
[32] |
B. Schweizer, Resonance meets homogenization -Construction of meta-materials with astonishing properties, Jahresberichte der DMV, 2016.
doi: 10.1365/s13291-016-0153-2. |
[33] |
V. Veselago,
The electrodynamics of substances with simultaneously negative values of ε and μ, Soviet Physics Uspekhi, 10 (1968), 509-514.
|
[34] |
V. V. Zhikov,
Two-scale convergence and spectral problems of homogenization, Tr. Semin. im. Petrovskogo I. G., 22 (2002), 105-120.
|


[1] |
Hakima Bessaih, Yalchin Efendiev, Florin Maris. Homogenization of the evolution Stokes equation in a perforated domain with a stochastic Fourier boundary condition. Networks and Heterogeneous Media, 2015, 10 (2) : 343-367. doi: 10.3934/nhm.2015.10.343 |
[2] |
Mamadou Sango. Homogenization of the Neumann problem for a quasilinear elliptic equation in a perforated domain. Networks and Heterogeneous Media, 2010, 5 (2) : 361-384. doi: 10.3934/nhm.2010.5.361 |
[3] |
Leonid Berlyand, Petru Mironescu. Two-parameter homogenization for a Ginzburg-Landau problem in a perforated domain. Networks and Heterogeneous Media, 2008, 3 (3) : 461-487. doi: 10.3934/nhm.2008.3.461 |
[4] |
Guillaume Bal. Homogenization in random media and effective medium theory for high frequency waves. Discrete and Continuous Dynamical Systems - B, 2007, 8 (2) : 473-492. doi: 10.3934/dcdsb.2007.8.473 |
[5] |
Patrizia Donato, Florian Gaveau. Homogenization and correctors for the wave equation in non periodic perforated domains. Networks and Heterogeneous Media, 2008, 3 (1) : 97-124. doi: 10.3934/nhm.2008.3.97 |
[6] |
Morteza Fotouhi, Mohsen Yousefnezhad. Homogenization of a locally periodic time-dependent domain. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1669-1695. doi: 10.3934/cpaa.2020061 |
[7] |
Wenjia Jing, Olivier Pinaud. A backscattering model based on corrector theory of homogenization for the random Helmholtz equation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5377-5407. doi: 10.3934/dcdsb.2019063 |
[8] |
Jiann-Sheng Jiang, Kung-Hwang Kuo, Chi-Kun Lin. Homogenization of second order equation with spatial dependent coefficient. Discrete and Continuous Dynamical Systems, 2005, 12 (2) : 303-313. doi: 10.3934/dcds.2005.12.303 |
[9] |
Gregory A. Chechkin, Tatiana P. Chechkina, Ciro D’Apice, Umberto De Maio. Homogenization in domains randomly perforated along the boundary. Discrete and Continuous Dynamical Systems - B, 2009, 12 (4) : 713-730. doi: 10.3934/dcdsb.2009.12.713 |
[10] |
Brahim Amaziane, Leonid Pankratov, Andrey Piatnitski. Homogenization of variational functionals with nonstandard growth in perforated domains. Networks and Heterogeneous Media, 2010, 5 (2) : 189-215. doi: 10.3934/nhm.2010.5.189 |
[11] |
S. L. Ma'u, P. Ramankutty. An averaging method for the Helmholtz equation. Conference Publications, 2003, 2003 (Special) : 604-609. doi: 10.3934/proc.2003.2003.604 |
[12] |
Arianna Giunti. Convergence rates for the homogenization of the Poisson problem in randomly perforated domains. Networks and Heterogeneous Media, 2021, 16 (3) : 341-375. doi: 10.3934/nhm.2021009 |
[13] |
Ciro D’Apice, Umberto De Maio, Peter I. Kogut. Boundary velocity suboptimal control of incompressible flow in cylindrically perforated domain. Discrete and Continuous Dynamical Systems - B, 2009, 11 (2) : 283-314. doi: 10.3934/dcdsb.2009.11.283 |
[14] |
John Sylvester. An estimate for the free Helmholtz equation that scales. Inverse Problems and Imaging, 2009, 3 (2) : 333-351. doi: 10.3934/ipi.2009.3.333 |
[15] |
Nicolas Forcadel, Wilfredo Salazar, Mamdouh Zaydan. Specified homogenization of a discrete traffic model leading to an effective junction condition. Communications on Pure and Applied Analysis, 2018, 17 (5) : 2173-2206. doi: 10.3934/cpaa.2018104 |
[16] |
Sista Sivaji Ganesh, Vivek Tewary. Bloch wave approach to almost periodic homogenization and approximations of effective coefficients. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 1989-2024. doi: 10.3934/dcdsb.2021119 |
[17] |
Sang-Yeun Shim, Marcos Capistran, Yu Chen. Rapid perturbational calculations for the Helmholtz equation in two dimensions. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 627-636. doi: 10.3934/dcds.2007.18.627 |
[18] |
Haijuan Hu, Jacques Froment, Baoyan Wang, Xiequan Fan. Spatial-Frequency domain nonlocal total variation for image denoising. Inverse Problems and Imaging, 2020, 14 (6) : 1157-1184. doi: 10.3934/ipi.2020059 |
[19] |
Giovambattista Amendola, Mauro Fabrizio, John Murrough Golden. Minimum free energy in the frequency domain for a heat conductor with memory. Discrete and Continuous Dynamical Systems - B, 2010, 14 (3) : 793-816. doi: 10.3934/dcdsb.2010.14.793 |
[20] |
Bopeng Rao, Xu Zhang. Frequency domain approach to decay rates for a coupled hyperbolic-parabolic system. Communications on Pure and Applied Analysis, 2021, 20 (7&8) : 2789-2809. doi: 10.3934/cpaa.2021119 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]