In this paper we develop a non-autonomous reaction-diffusion model with the Robin boundary conditions to describe insect dispersal on an isotropically varying domain. We investigate the stability of the reaction-diffusion model. The stability results of the model describe either insect survival or vanishing.
Citation: |
D. G. Aronson
, D. Ludwig
and H. F. Weinberger
, Spatial patterning of the spruce budworm, J. Math. Biol., 8 (1979)
, 217-258.
doi: 10.1007/BF00276310.![]() ![]() ![]() |
|
R. S. Cantrell and C. Cosner,
Spatial Ecology via Reaction-diffusion Equations, John Wiley & Sons Ltd, 2003.
doi: 10.1002/0470871296.![]() ![]() ![]() |
|
E. J. Crampin
, E. A. Gaffney
and P. K. Maini
, Reaction and diffusion on growing domains: Scenarios for robust pattern formation, Bull. Math. Biol., 61 (1999)
, 1093-1120.
doi: 10.1006/bulm.1999.0131.![]() ![]() |
|
J. Gjorgjieva
and J. Jacobsen
, Turing patterns on growing spheres: The exponential case, Discrete Continuous Dynam. Systems-A, Suppl., (2007)
, 436-445.
![]() ![]() |
|
P. Hess,
Periodic Parabolic Boundary Value Problems and Positivity, Longman Scientific & Technical, Harlow, UK, 1991.
![]() ![]() |
|
S. Kondo
and R. Asai
, A reaction-diffusion wave on the skin of the marine angelfish, Nature, 376 (2002)
, 765-768.
doi: 10.1038/376765a0.![]() ![]() |
|
J. A. Langa
, A. R. Bernal
and A. Suárez
, On the long time behavior of non-autonomous Lotka-Volterra models with diffusion via the sub-supertrajectory method, J. Differential Equations, 249 (2010)
, 414-445.
doi: 10.1016/j.jde.2010.04.001.![]() ![]() ![]() |
|
J. A. Langa
, J. Robinson
, A. Rodriguez-Bernal
and A. Suarez
, Permanence and asymptotically stable complete trajectories for nonautonomous lotka-volterra models with diffusion, SIAM J. Math. Anal., 40 (2009)
, 2179-2216.
doi: 10.1137/080721790.![]() ![]() ![]() |
|
Y. Lou
, Some challenging mathematical problems in evolution of disperal and population dynamics, Tutorials in Mathematical Biosciences, 1922 (2008)
, 171-205.
doi: 10.1007/978-3-540-74331-6_5.![]() ![]() ![]() |
|
A. Madzvamuse
, E. A. Gaffney
and P. K. Maini
, Stability analysis of non-autonomous reaction-diffusion, J. Math. Biol., 61 (2010)
, 133-164.
doi: 10.1007/s00285-009-0293-4.![]() ![]() ![]() |
|
J. Mierczyn'ski
, The principal spectrum for linear nonautonomous parabolic PDEs of second order: Basic properties, J. Differential Equations, 168 (2000)
, 453-476.
doi: 10.1006/jdeq.2000.3893.![]() ![]() ![]() |
|
J. D. Murray,
Mathematical Biology Springer-Verlag, Berlin, London, 1993.
doi: 10.1007/b98869.![]() ![]() ![]() |
|
C. V. Pao,
Nonlinear Parabolic and Elliptic Equations Plenum Press, New York and London, 1992.
![]() ![]() |
|
A. Rodriguez-Bernal
and A. Vidal-López
, Existence, uniqueness and attractivity properties of positive complete trajectories for non-autonomous reaction-diffusion problem, Discrete Continuous Dynam. Systems, 18 (2007)
, 537-567.
doi: 10.3934/dcds.2007.18.537.![]() ![]() ![]() |
|
A. Rodriguez-Bernal
and A. Vidal-López
, Extremal equilibria for reaction-diffusion equations in bounded domains and applications, J. Differential Equations, 244 (2008)
, 2983-3030.
doi: 10.1016/j.jde.2008.02.046.![]() ![]() ![]() |
|
H. Smith,
Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems Amer. Math. Soc. , Providence, 1995.
![]() ![]() |
|
Q. Tang
and Z. Lin
, The asymptotic analysis of an insect dispersal model on a growing domain, J. Math. Anal. Appl., 378 (2011)
, 649-656.
doi: 10.1016/j.jmaa.2011.01.057.![]() ![]() ![]() |
|
C. Varea, J. L. Aragón and R. A. Barrio, Confined Turing patterns in growing systems ,Phys. Rev. E, 56 (1997), 1250.
doi: 10.1103/PhysRevE.56.1250.![]() ![]() |