October  2017, 10(5): 1025-1042. doi: 10.3934/dcdss.2017054

Pattern dynamics of a delayed eco-epidemiological model with disease in the predator

1. 

Department of Computer Science and Technology, North University of China, Taiyuan Shan'xi 030051, China

2. 

Complex Systems Research Center, Shanxi University, Taiyuan Shan'xi 030051, China

* Corresponding author: Zhen Jin

Received  October 2016 Revised  January 2017 Published  June 2017

Fund Project: The work is supported by the National Natural Science Foundation of China under Grants (11331009,11671241 and 11301490), 131 Talents of Shanxi University, Program for the Outstanding Innovative Teams (OIT) of Higher Learning Institutions of Shanxi, and Natural Science Foundation of Shanxi Province Grant no. 201601D021002.

The eco-epidemiology, combining interacting species with epidemiology, can describe some complex phenomena in real ecosystem. Most diseases contain the latent stage in the process of disease transmission. In this paper, a spatial eco-epidemiological model with delay and disease in the predator is studied. By mathematical analysis, the characteristic equations are derived, then we give the conditions of diffusion-driven equilibrium instability and delay-driven equilibrium instability, and find the ranges of existence of Turing patterns in parameter space. Moreover, numerical results indicate that a parameter variation has influences on time and spatially averaged densities of pattern reaching stationary states when other parameters are fixed. The obtained results may explain some mechanisms of phenomena existing in real ecosystem.

Citation: Jing Li, Zhen Jin, Gui-Quan Sun, Li-Peng Song. Pattern dynamics of a delayed eco-epidemiological model with disease in the predator. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 1025-1042. doi: 10.3934/dcdss.2017054
References:
[1]

A. AbdelrazecJ. Bélair and C. Shan, Modeling the spread and control of dengue with limited public health resources, Mathematical Biosciences, 271 (2016), 136-145.  doi: 10.1016/j.mbs.2015.11.004.

[2]

R. M. Anderson, R. M. May and B. Anderson, Infectious Diseases of Humans: Dynamics and Control, Oxford university press, Oxford, 1992.

[3]

J. L. AragonC. Varea and R. A. Barrio, Spatial patterning in modified Turing systems: Application to pigmentation patterns on marine fish, Forma, 13 (1998), 213-221. 

[4]

N. T. J. Bailey, The Mathematical Theory of Infectious Diseases and Its Applications, Charles Griffin and Company Ltd, Bucks, 1975.

[5]

R. A. BarrioC. Varea and J. L. Aragón, A two-dimensional numerical study of spatial pattern formation in interacting Turing systems, Bulletin of mathematical biology, 61 (1999), 483-505.  doi: 10.1006/bulm.1998.0093.

[6]

A. M. Bate and F. M. Hilker, Predator-prey oscillations can shift when diseases become endemic, Journal of Theoretical Biology, 316 (2013), 1-8.  doi: 10.1016/j.jtbi.2012.09.013.

[7]

A. D. Bazykin, Nonlinear Dynamics of Interacting Populations, World Scientific, Singapore, 1998. doi: 10.1142/9789812798725.

[8]

C. BowmanA. B. Gumel and P. Van den Driessche, A mathematical model for assessing control strategies against West Nile virus, Bulletin of Mathematical Biology, 67 (2005), 1107-1133.  doi: 10.1016/j.bulm.2005.01.002.

[9]

L. W. Buss, Competitive intransitivity and size-frequency distributions of interacting populations, Proceedings of the National Academy of Sciences, 77 (1980), 5355-5359.  doi: 10.1073/pnas.77.9.5355.

[10]

J. Chattopadhyay and O. Arino, A predator-prey model with disease in the prey, Nonlinear Analysis: Theory, Methods and Applications, 36 (1999), 747-766.  doi: 10.1016/S0362-546X(98)00126-6.

[11]

P. J. Cunningham and W. J. Cunningham, Time lag in prey-predator population models, Ecology, 38 (1957), 136-139.  doi: 10.2307/1932137.

[12]

H. I. Freedman and P. Waltman, Persistence in models of three interacting predator-prey populations, Mathematical Biosciences, 68 (1984), 213-231.  doi: 10.1016/0025-5564(84)90032-4.

[13]

N. S. GoelS. C. Maitra and E. W. Montroll, On the Volterra and other nonlinear models of interacting populations, Reviews of Modern Physics, 43 (1971), 231-276.  doi: 10.1103/RevModPhys.43.231.

[14]

K. P. Hadeler and H. I. Freedman, Predator-prey populations with parasitic infection, Journal of Mathematical Biology, 27 (1989), 609-631.  doi: 10.1007/BF00276947.

[15]

M. Haque, A predator-prey model with disease in the predator species only, Nonlinear Analysis: Real World Applications, 11 (2010), 2224-2236.  doi: 10.1016/j.nonrwa.2009.06.012.

[16]

H. W. Hethcote, A thousand and one epidemic models, in: S. A. Levin, Frontiers in mathematical biology, Leture Notes in Biomathematics, Springer Berlin Heidelberg, Berlin, (1994), 504-515. doi: 10.1007/978-3-642-50124-1_29.

[17]

H. W. HethcoteW. Wang and L. Han, A predator-prey model with infected prey, Theoretical Population Biology, 66 (2004), 259-268.  doi: 10.1016/j.tpb.2004.06.010.

[18]

F. M. Hilker and K. Schmitz, Disease-induced stabilization of predator-prey oscillations, Journal of Theoretical Biology, 255 (2008), 299-306.  doi: 10.1016/j.jtbi.2008.08.018.

[19]

Y. H. Hsieh and C. K. Hsiao, Predator-prey model with disease infection in both populations, Mathematical Medicine and Biology, 25 (2008), 247-266.  doi: 10.1093/imammb/dqn017.

[20]

K. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proceedings of the Royal Society of London A, 115 (1927), 700-721.  doi: 10.1098/rspa.1927.0118.

[21]

C. A. Klausmeier, Regular and irregular patterns in semiarid vegetation, Science, 284 (1999), 1826-1828.  doi: 10.1126/science.284.5421.1826.

[22]

W. Ko and K. Ryu, Qualitative analysis of a predator-prey model with Holling type Ⅱ functional response incorporating a prey refuge, Journal of Differential Equations, 231 (2006), 534-550.  doi: 10.1016/j.jde.2006.08.001.

[23]

Y. Kuang and E. Beretta, Global qualitative analysis of a ratio-dependent predator-prey system, Journal of Mathematical Biology, 36 (1998), 389-406.  doi: 10.1007/s002850050105.

[24]

X. LiG. Hu and Z. Feng, A periodic and diffusive predator-prey model with disease in the prey, Discrete and Continuous Dynamical Systems-Series S, 10 (2017), 445-461.  doi: 10.3934/dcdss.2017021.

[25]

L. LiZ. Jin and J. Li, Periodic solutions in a herbivore-plant system with time delay and spatial diffusion, Applied Mathematical Modelling, 40 (2016), 4765-4777.  doi: 10.1016/j.apm.2015.12.003.

[26]

X. Lian, H. Wang and W. Wang, Delay-driven pattern formation in a reaction-diffusion predator-prey model incorporating a prey refuge, J. Stat. Mech. , 4 (2013), P04006, 16 pp. doi: 10.1088/1742-5468/2013/04/P04006.

[27]

Q. X. LiuP. M. J. Herman and W. M. Mooij, Pattern formation at multiple spatial scales drives the resilience of mussel bed ecosystems, Nature communications, 5 (2014), 1-7.  doi: 10.1038/ncomms6234.

[28]

R. T. LiuS. S. Liaw and P. K. Maini, Two-stage Turing model for generating pigment patterns on the leopard and the jaguar, Physical Review E, 74 (2006), 011914(1-8).  doi: 10.1103/PhysRevE.74.011914.

[29]

A. Martin and S. Ruan, Predator-prey models with delay and prey harvesting, Journal of Mathematical Biology, 43 (2001), 247-267.  doi: 10.1007/s002850100095.

[30]

M. Pascual, Diffusion-induced chaos in a spatial predator-prey system, Proceedings of the Royal Society of London B: Biological Sciences, 251 (1993), 1-7.  doi: 10.1098/rspb.1993.0001.

[31]

M. L. Rosenzweig and R. H. MacArthur, Graphical representation and stability conditions of predator-prey interactions, Am. Nat., 97 (1963), 209-223.  doi: 10.1086/282272.

[32]

S. Sen, P. Ghosh and S. S. Riaz et al. , Time-delay-induced instabilities in reaction-diffusion systems, Phys. Rev. E, 80 (2009), 046212. doi: 10.1103/PhysRevE.80.046212.

[33]

A. R. E. SinclairS. Mduma and J. S. Brashares, Patterns of predation in a diverse predator-prey system, Nature, 425 (2003), 288-290.  doi: 10.1038/nature01934.

[34]

L. A. de Souza and C. E. de Carvalho Freitas, Fishing sustainability via inclusion of man in predator-prey models: A case study in Lago Preto, Manacapuru, Amazonas, Ecological Modelling, 221 (2010), 703-712.  doi: 10.1016/j.ecolmodel.2009.04.037.

[35]

Y. SuS. Ruan and J. Wei, Periodicity and synchronization in blood-stage malaria infection, Journal of Mathematical Biology, 63 (2011), 557-574.  doi: 10.1007/s00285-010-0381-5.

[36]

Y. SuJ. Wei and J. Shi, Hopf bifurcations in a reaction-diffusion population model with delay effect, Journal of Differential Equations, 247 (2009), 1156-1184.  doi: 10.1016/j.jde.2009.04.017.

[37]

G.-Q. Sun, Mathematical modeling of population dynamics with Allee effect, Nonlinear Dynamics, 85 (2016), 1-12.  doi: 10.1007/s11071-016-2671-y.

[38]

G.-Q. SunZ. Jin and L. Li, Spatial patterns of a predator-prey model with cross diffusion, Nonlinear Dynamics, 69 (2012), 1631-1638.  doi: 10.1007/s11071-012-0374-6.

[39]

G. SunZ. Jin and Q.-X. Liu, Pattern formation in a spatial S-I model with non-linear incidence rates, Journal of Statistical Mechanics: Theory and Experiment, 2007 (2007), P11011(1-14). 

[40]

G.-Q. SunM. Jusup and Z. Jin, Pattern transitions in spatial epidemics: Mechanisms and emergent properties, Physics of Life Reviews, 19 (2016), 43-47.  doi: 10.1016/j.plrev.2016.08.002.

[41]

G. -Q. Sun, S. -L. Wang and Q. Ren, et al. , Effects of time delay and space on herbivore dynamics: linking inducible defenses of plants to herbivore outbreak, Scientific Reports, 5 (2015), 11246. doi: 10.1038/srep11246.

[42]

G.-Q. SunZ.-Y. Wu and Z. Jin, Influence of isolation degree of spatial patterns on persistence of populations, Nonlinear Dynamics, 83 (2016), 811-819.  doi: 10.1007/s11071-015-2369-6.

[43]

G.-Q. SunJ. Zhang and L. P. Song, Pattern formation of a spatial predator-prey system, Applied Mathematics and Computation, 218 (2012), 11151-11162.  doi: 10.1016/j.amc.2012.04.071.

[44]

K. Uriu and Y. Iwasa, Turing pattern formation with two kinds of cells and a diffusive chemical, Bulletin of Mathematical Biology, 69 (2007), 2515-2536.  doi: 10.1007/s11538-007-9230-0.

[45]

E. Venturino, The influence of diseases on Lotka-Volterra systems, Rocky Mountain Journal of Mathematics, 24 (1994), 381-402.  doi: 10.1216/rmjm/1181072471.

[46]

E. Venturino, Epidemics in predator-prey models: disease in the predators, Mathematical Medicine and Biology, 19 (2002), 185-205.  doi: 10.1093/imammb/19.3.185.

[47]

V. Volterra, Fluctuations in the abundance of a species considered mathematically, Nature, 118 (1926), 558-560.  doi: 10.1038/118558a0.

[48]

V. Volterra, Variations and fluctuations of the number of individuals in animal species living together, J. Cons. Int. Explor. Mer., 3 (1928), 3-51.  doi: 10.1093/icesjms/3.1.3.

[49]

K. A. J. White and C. A. Gilligan, Spatial heterogeneity in three species, plant-parasite-hyperparasite systems, Philosophical Transactions of the Royal Society of London B, 353 (1998), 543-557.  doi: 10.1098/rstb.1998.0226.

[50]

Y. Xiao and L. Chen, Modeling and analysis of a predator-prey model with disease in the prey, Mathematical Biosciences, 171 (2001), 59-82.  doi: 10.1016/S0025-5564(01)00049-9.

[51]

Y. Xiao and L. Chen, Analysis of a three species eco-epidemiological model, Journal of Mathematical Analysis and Applications, 258 (2001), 733-754.  doi: 10.1006/jmaa.2001.7514.

[52]

D. XiaoW. Li and M. Han, Dynamics in a ratio-dependent predator-prey model with predator harvesting, Journal of Mathematical Analysis and Applications, 324 (2006), 14-29.  doi: 10.1016/j.jmaa.2005.11.048.

[53]

Y. Xiao and F. Van Den Bosch, The dynamics of an eco-epidemic model with biological control, Ecological Modelling, 168 (2003), 203-214.  doi: 10.1016/S0304-3800(03)00197-2.

[54]

F. YiJ. Wei and J. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system, Journal of Differential Equations, 246 (2009), 1944-1977.  doi: 10.1016/j.jde.2008.10.024.

[55]

P. Yu, Closed-form conditions of bifurcation points for general differential equations, International Journal of Bifurcation and Chaos, 15 (2005), 1467-1483.  doi: 10.1142/S0218127405012582.

[56]

J. ZhangZ. Jin and G.-Q. Sun, Modeling seasonal rabies epidemics in China, Bulletin of Mathematical Biology, 74 (2012), 1226-1251.  doi: 10.1007/s11538-012-9720-6.

show all references

References:
[1]

A. AbdelrazecJ. Bélair and C. Shan, Modeling the spread and control of dengue with limited public health resources, Mathematical Biosciences, 271 (2016), 136-145.  doi: 10.1016/j.mbs.2015.11.004.

[2]

R. M. Anderson, R. M. May and B. Anderson, Infectious Diseases of Humans: Dynamics and Control, Oxford university press, Oxford, 1992.

[3]

J. L. AragonC. Varea and R. A. Barrio, Spatial patterning in modified Turing systems: Application to pigmentation patterns on marine fish, Forma, 13 (1998), 213-221. 

[4]

N. T. J. Bailey, The Mathematical Theory of Infectious Diseases and Its Applications, Charles Griffin and Company Ltd, Bucks, 1975.

[5]

R. A. BarrioC. Varea and J. L. Aragón, A two-dimensional numerical study of spatial pattern formation in interacting Turing systems, Bulletin of mathematical biology, 61 (1999), 483-505.  doi: 10.1006/bulm.1998.0093.

[6]

A. M. Bate and F. M. Hilker, Predator-prey oscillations can shift when diseases become endemic, Journal of Theoretical Biology, 316 (2013), 1-8.  doi: 10.1016/j.jtbi.2012.09.013.

[7]

A. D. Bazykin, Nonlinear Dynamics of Interacting Populations, World Scientific, Singapore, 1998. doi: 10.1142/9789812798725.

[8]

C. BowmanA. B. Gumel and P. Van den Driessche, A mathematical model for assessing control strategies against West Nile virus, Bulletin of Mathematical Biology, 67 (2005), 1107-1133.  doi: 10.1016/j.bulm.2005.01.002.

[9]

L. W. Buss, Competitive intransitivity and size-frequency distributions of interacting populations, Proceedings of the National Academy of Sciences, 77 (1980), 5355-5359.  doi: 10.1073/pnas.77.9.5355.

[10]

J. Chattopadhyay and O. Arino, A predator-prey model with disease in the prey, Nonlinear Analysis: Theory, Methods and Applications, 36 (1999), 747-766.  doi: 10.1016/S0362-546X(98)00126-6.

[11]

P. J. Cunningham and W. J. Cunningham, Time lag in prey-predator population models, Ecology, 38 (1957), 136-139.  doi: 10.2307/1932137.

[12]

H. I. Freedman and P. Waltman, Persistence in models of three interacting predator-prey populations, Mathematical Biosciences, 68 (1984), 213-231.  doi: 10.1016/0025-5564(84)90032-4.

[13]

N. S. GoelS. C. Maitra and E. W. Montroll, On the Volterra and other nonlinear models of interacting populations, Reviews of Modern Physics, 43 (1971), 231-276.  doi: 10.1103/RevModPhys.43.231.

[14]

K. P. Hadeler and H. I. Freedman, Predator-prey populations with parasitic infection, Journal of Mathematical Biology, 27 (1989), 609-631.  doi: 10.1007/BF00276947.

[15]

M. Haque, A predator-prey model with disease in the predator species only, Nonlinear Analysis: Real World Applications, 11 (2010), 2224-2236.  doi: 10.1016/j.nonrwa.2009.06.012.

[16]

H. W. Hethcote, A thousand and one epidemic models, in: S. A. Levin, Frontiers in mathematical biology, Leture Notes in Biomathematics, Springer Berlin Heidelberg, Berlin, (1994), 504-515. doi: 10.1007/978-3-642-50124-1_29.

[17]

H. W. HethcoteW. Wang and L. Han, A predator-prey model with infected prey, Theoretical Population Biology, 66 (2004), 259-268.  doi: 10.1016/j.tpb.2004.06.010.

[18]

F. M. Hilker and K. Schmitz, Disease-induced stabilization of predator-prey oscillations, Journal of Theoretical Biology, 255 (2008), 299-306.  doi: 10.1016/j.jtbi.2008.08.018.

[19]

Y. H. Hsieh and C. K. Hsiao, Predator-prey model with disease infection in both populations, Mathematical Medicine and Biology, 25 (2008), 247-266.  doi: 10.1093/imammb/dqn017.

[20]

K. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proceedings of the Royal Society of London A, 115 (1927), 700-721.  doi: 10.1098/rspa.1927.0118.

[21]

C. A. Klausmeier, Regular and irregular patterns in semiarid vegetation, Science, 284 (1999), 1826-1828.  doi: 10.1126/science.284.5421.1826.

[22]

W. Ko and K. Ryu, Qualitative analysis of a predator-prey model with Holling type Ⅱ functional response incorporating a prey refuge, Journal of Differential Equations, 231 (2006), 534-550.  doi: 10.1016/j.jde.2006.08.001.

[23]

Y. Kuang and E. Beretta, Global qualitative analysis of a ratio-dependent predator-prey system, Journal of Mathematical Biology, 36 (1998), 389-406.  doi: 10.1007/s002850050105.

[24]

X. LiG. Hu and Z. Feng, A periodic and diffusive predator-prey model with disease in the prey, Discrete and Continuous Dynamical Systems-Series S, 10 (2017), 445-461.  doi: 10.3934/dcdss.2017021.

[25]

L. LiZ. Jin and J. Li, Periodic solutions in a herbivore-plant system with time delay and spatial diffusion, Applied Mathematical Modelling, 40 (2016), 4765-4777.  doi: 10.1016/j.apm.2015.12.003.

[26]

X. Lian, H. Wang and W. Wang, Delay-driven pattern formation in a reaction-diffusion predator-prey model incorporating a prey refuge, J. Stat. Mech. , 4 (2013), P04006, 16 pp. doi: 10.1088/1742-5468/2013/04/P04006.

[27]

Q. X. LiuP. M. J. Herman and W. M. Mooij, Pattern formation at multiple spatial scales drives the resilience of mussel bed ecosystems, Nature communications, 5 (2014), 1-7.  doi: 10.1038/ncomms6234.

[28]

R. T. LiuS. S. Liaw and P. K. Maini, Two-stage Turing model for generating pigment patterns on the leopard and the jaguar, Physical Review E, 74 (2006), 011914(1-8).  doi: 10.1103/PhysRevE.74.011914.

[29]

A. Martin and S. Ruan, Predator-prey models with delay and prey harvesting, Journal of Mathematical Biology, 43 (2001), 247-267.  doi: 10.1007/s002850100095.

[30]

M. Pascual, Diffusion-induced chaos in a spatial predator-prey system, Proceedings of the Royal Society of London B: Biological Sciences, 251 (1993), 1-7.  doi: 10.1098/rspb.1993.0001.

[31]

M. L. Rosenzweig and R. H. MacArthur, Graphical representation and stability conditions of predator-prey interactions, Am. Nat., 97 (1963), 209-223.  doi: 10.1086/282272.

[32]

S. Sen, P. Ghosh and S. S. Riaz et al. , Time-delay-induced instabilities in reaction-diffusion systems, Phys. Rev. E, 80 (2009), 046212. doi: 10.1103/PhysRevE.80.046212.

[33]

A. R. E. SinclairS. Mduma and J. S. Brashares, Patterns of predation in a diverse predator-prey system, Nature, 425 (2003), 288-290.  doi: 10.1038/nature01934.

[34]

L. A. de Souza and C. E. de Carvalho Freitas, Fishing sustainability via inclusion of man in predator-prey models: A case study in Lago Preto, Manacapuru, Amazonas, Ecological Modelling, 221 (2010), 703-712.  doi: 10.1016/j.ecolmodel.2009.04.037.

[35]

Y. SuS. Ruan and J. Wei, Periodicity and synchronization in blood-stage malaria infection, Journal of Mathematical Biology, 63 (2011), 557-574.  doi: 10.1007/s00285-010-0381-5.

[36]

Y. SuJ. Wei and J. Shi, Hopf bifurcations in a reaction-diffusion population model with delay effect, Journal of Differential Equations, 247 (2009), 1156-1184.  doi: 10.1016/j.jde.2009.04.017.

[37]

G.-Q. Sun, Mathematical modeling of population dynamics with Allee effect, Nonlinear Dynamics, 85 (2016), 1-12.  doi: 10.1007/s11071-016-2671-y.

[38]

G.-Q. SunZ. Jin and L. Li, Spatial patterns of a predator-prey model with cross diffusion, Nonlinear Dynamics, 69 (2012), 1631-1638.  doi: 10.1007/s11071-012-0374-6.

[39]

G. SunZ. Jin and Q.-X. Liu, Pattern formation in a spatial S-I model with non-linear incidence rates, Journal of Statistical Mechanics: Theory and Experiment, 2007 (2007), P11011(1-14). 

[40]

G.-Q. SunM. Jusup and Z. Jin, Pattern transitions in spatial epidemics: Mechanisms and emergent properties, Physics of Life Reviews, 19 (2016), 43-47.  doi: 10.1016/j.plrev.2016.08.002.

[41]

G. -Q. Sun, S. -L. Wang and Q. Ren, et al. , Effects of time delay and space on herbivore dynamics: linking inducible defenses of plants to herbivore outbreak, Scientific Reports, 5 (2015), 11246. doi: 10.1038/srep11246.

[42]

G.-Q. SunZ.-Y. Wu and Z. Jin, Influence of isolation degree of spatial patterns on persistence of populations, Nonlinear Dynamics, 83 (2016), 811-819.  doi: 10.1007/s11071-015-2369-6.

[43]

G.-Q. SunJ. Zhang and L. P. Song, Pattern formation of a spatial predator-prey system, Applied Mathematics and Computation, 218 (2012), 11151-11162.  doi: 10.1016/j.amc.2012.04.071.

[44]

K. Uriu and Y. Iwasa, Turing pattern formation with two kinds of cells and a diffusive chemical, Bulletin of Mathematical Biology, 69 (2007), 2515-2536.  doi: 10.1007/s11538-007-9230-0.

[45]

E. Venturino, The influence of diseases on Lotka-Volterra systems, Rocky Mountain Journal of Mathematics, 24 (1994), 381-402.  doi: 10.1216/rmjm/1181072471.

[46]

E. Venturino, Epidemics in predator-prey models: disease in the predators, Mathematical Medicine and Biology, 19 (2002), 185-205.  doi: 10.1093/imammb/19.3.185.

[47]

V. Volterra, Fluctuations in the abundance of a species considered mathematically, Nature, 118 (1926), 558-560.  doi: 10.1038/118558a0.

[48]

V. Volterra, Variations and fluctuations of the number of individuals in animal species living together, J. Cons. Int. Explor. Mer., 3 (1928), 3-51.  doi: 10.1093/icesjms/3.1.3.

[49]

K. A. J. White and C. A. Gilligan, Spatial heterogeneity in three species, plant-parasite-hyperparasite systems, Philosophical Transactions of the Royal Society of London B, 353 (1998), 543-557.  doi: 10.1098/rstb.1998.0226.

[50]

Y. Xiao and L. Chen, Modeling and analysis of a predator-prey model with disease in the prey, Mathematical Biosciences, 171 (2001), 59-82.  doi: 10.1016/S0025-5564(01)00049-9.

[51]

Y. Xiao and L. Chen, Analysis of a three species eco-epidemiological model, Journal of Mathematical Analysis and Applications, 258 (2001), 733-754.  doi: 10.1006/jmaa.2001.7514.

[52]

D. XiaoW. Li and M. Han, Dynamics in a ratio-dependent predator-prey model with predator harvesting, Journal of Mathematical Analysis and Applications, 324 (2006), 14-29.  doi: 10.1016/j.jmaa.2005.11.048.

[53]

Y. Xiao and F. Van Den Bosch, The dynamics of an eco-epidemic model with biological control, Ecological Modelling, 168 (2003), 203-214.  doi: 10.1016/S0304-3800(03)00197-2.

[54]

F. YiJ. Wei and J. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system, Journal of Differential Equations, 246 (2009), 1944-1977.  doi: 10.1016/j.jde.2008.10.024.

[55]

P. Yu, Closed-form conditions of bifurcation points for general differential equations, International Journal of Bifurcation and Chaos, 15 (2005), 1467-1483.  doi: 10.1142/S0218127405012582.

[56]

J. ZhangZ. Jin and G.-Q. Sun, Modeling seasonal rabies epidemics in China, Bulletin of Mathematical Biology, 74 (2012), 1226-1251.  doi: 10.1007/s11538-012-9720-6.

Figure 1.  Schematic diagrams of the cubic function $y(e)$ for $y_{1}>0$ in Theorem 3.3. (a) $y_{3}x y0$. (b) $y_{3}=0$ and $y_{2} < 0$. (c) $y_{3}>0$, $y_{2}^{2}-3y_{1}y_{3}>0$ and $y_{2} < 0$
Figure 2.  The bifurcation diagram of system (4) in parameter space $r-h$. (a) Parameters are $\beta_{1}=1.8$, $\mu=0.6$, $m=0.8$, $D_{1}=1$, $D_{2}=0.03$, $D_{3}=2$, $\tau=0.01$. (b) Parameters are $\beta_{1}=1.8$, $\mu=0.6$, $m=0.7$, $D_{1}=10$, $D_{2}=0.1$, $D_{3}=4$, $\tau=0.01$
Figure 3.  Coefficients of the dispersion relation of the characteristic equation (16) for $r=0.1$, $h=0.07$, $\beta_{1}=1.8$, $\mu=0.6$, $m=0.8$, $D_{1}=1$, $D_{2}=0.03$, $D_{3}=2$, $\tau=0.01$
Figure 4.  Coefficients of the dispersion relation of the characteristic equation (16) for $r=0.1$, $h=0.1$, $\beta_{1}=1.8$, $\mu=0.6$, $m=0.7$, $D_{1}=10$, $D_{2}=0.1$, $D_{3}=4$, $\tau=0.01$
Figure 5.  Schematic diagrams of the cubic function $y(e)$ for $y_{1}>0$ in Theorem 3.4. (a) $y_{2}^{2}-3y_{1}y_{3}\leq 0$. (b) $y_{3}>0$, $y_{2}^{2}-3y_{1}y_{3}>0$ and $y_{2}>0$. (c) $y_{3}=0$ and $y_{2}>0$. (d) $y_{3} < 0$. (e) $y_{3}=0$ and $y_{2} < 0$. (f) $y_{3}>0$, $y_{2}^{2}-3y_{1}y_{3}>0$ and $y_{2} < 0$
Figure 6.  Spatial patterns (top) and the corresponding spatially averaged population density (bottom). (a) Small "black-eye" pattern (r=0.1), (b) small "black-eye" pattern (r=0.15)
Figure 7.  Spatial patterns (top) and the corresponding spatially averaged population density (bottom). (a) Big "black-eye" pattern (h=0.1), (b) big "black-eye" pattern (h=0.14)
[1]

Wonlyul Ko, Inkyung Ahn. Pattern formation of a diffusive eco-epidemiological model with predator-prey interaction. Communications on Pure and Applied Analysis, 2018, 17 (2) : 375-389. doi: 10.3934/cpaa.2018021

[2]

Lopo F. de Jesus, César M. Silva, Helder Vilarinho. Random perturbations of an eco-epidemiological model. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 257-275. doi: 10.3934/dcdsb.2021040

[3]

Fengqi Yi, Eamonn A. Gaffney, Sungrim Seirin-Lee. The bifurcation analysis of turing pattern formation induced by delay and diffusion in the Schnakenberg system. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 647-668. doi: 10.3934/dcdsb.2017031

[4]

Qiumei Zhang, Daqing Jiang, Li Zu. The stability of a perturbed eco-epidemiological model with Holling type II functional response by white noise. Discrete and Continuous Dynamical Systems - B, 2015, 20 (1) : 295-321. doi: 10.3934/dcdsb.2015.20.295

[5]

Weihua Jiang, Xun Cao, Chuncheng Wang. Turing instability and pattern formations for reaction-diffusion systems on 2D bounded domain. Discrete and Continuous Dynamical Systems - B, 2022, 27 (2) : 1163-1178. doi: 10.3934/dcdsb.2021085

[6]

Qingyan Shi, Junping Shi, Yongli Song. Hopf bifurcation and pattern formation in a delayed diffusive logistic model with spatial heterogeneity. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 467-486. doi: 10.3934/dcdsb.2018182

[7]

Yoshihisa Morita, Kunimochi Sakamoto. Turing type instability in a diffusion model with mass transport on the boundary. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3813-3836. doi: 10.3934/dcds.2020160

[8]

R.A. Satnoianu, Philip K. Maini, F.S. Garduno, J.P. Armitage. Travelling waves in a nonlinear degenerate diffusion model for bacterial pattern formation. Discrete and Continuous Dynamical Systems - B, 2001, 1 (3) : 339-362. doi: 10.3934/dcdsb.2001.1.339

[9]

Hongfei Xu, Jinfeng Wang, Xuelian Xu. Dynamics and pattern formation in a cross-diffusion model with stage structure for predators. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021237

[10]

Martin Baurmann, Wolfgang Ebenhöh, Ulrike Feudel. Turing instabilities and pattern formation in a benthic nutrient-microorganism system. Mathematical Biosciences & Engineering, 2004, 1 (1) : 111-130. doi: 10.3934/mbe.2004.1.111

[11]

Yuan Lou, Wei-Ming Ni, Shoji Yotsutani. Pattern formation in a cross-diffusion system. Discrete and Continuous Dynamical Systems, 2015, 35 (4) : 1589-1607. doi: 10.3934/dcds.2015.35.1589

[12]

Maxime Breden, Christian Kuehn, Cinzia Soresina. On the influence of cross-diffusion in pattern formation. Journal of Computational Dynamics, 2021, 8 (2) : 213-240. doi: 10.3934/jcd.2021010

[13]

Yansu Ji, Jianwei Shen, Xiaochen Mao. Pattern formation of Brusselator in the reaction-diffusion system. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022103

[14]

Shanshan Chen, Junping Shi, Guohong Zhang. Spatial pattern formation in activator-inhibitor models with nonlocal dispersal. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 1843-1866. doi: 10.3934/dcdsb.2020042

[15]

Jing Li, Gui-Quan Sun, Zhen Jin. Interactions of time delay and spatial diffusion induce the periodic oscillation of the vegetation system. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 2147-2172. doi: 10.3934/dcdsb.2021127

[16]

Gaetana Gambino, Valeria Giunta, Maria Carmela Lombardo, Gianfranco Rubino. Cross-diffusion effects on stationary pattern formation in the FitzHugh-Nagumo model. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022063

[17]

Georg Hetzer, Anotida Madzvamuse, Wenxian Shen. Characterization of turing diffusion-driven instability on evolving domains. Discrete and Continuous Dynamical Systems, 2012, 32 (11) : 3975-4000. doi: 10.3934/dcds.2012.32.3975

[18]

Sebastian Aniţa, Bedreddine Ainseba. Internal eradicability for an epidemiological model with diffusion. Mathematical Biosciences & Engineering, 2005, 2 (3) : 437-443. doi: 10.3934/mbe.2005.2.437

[19]

Peter Rashkov. Remarks on pattern formation in a model for hair follicle spacing. Discrete and Continuous Dynamical Systems - B, 2015, 20 (5) : 1555-1572. doi: 10.3934/dcdsb.2015.20.1555

[20]

Rui Peng, Fengqi Yi. On spatiotemporal pattern formation in a diffusive bimolecular model. Discrete and Continuous Dynamical Systems - B, 2011, 15 (1) : 217-230. doi: 10.3934/dcdsb.2011.15.217

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (409)
  • HTML views (81)
  • Cited by (1)

Other articles
by authors

[Back to Top]