
-
Previous Article
Pattern formation of a coupled two-cell Schnakenberg model
- DCDS-S Home
- This Issue
-
Next Article
Pattern dynamics of a delayed eco-epidemiological model with disease in the predator
A kind of generalized transversality theorem for $C^r$ mapping with parameter
1. | Department of Mathematics, Jilin University, Changchun, 130012, China |
2. | School of Science, Qiqihar University, Qiqihar, 161006, China |
The author considers a generalized transversality theorem of the mappings with parameter in infinite dimensional Banach space. If the mapping is generalized transversal to a single point set, and in the sense of exterior parameters, the mapping is a Fredholm operator, then there exists a residual set of parameter, such that the Fredholm operator is generalized transversal to the single point set.
References:
[1] |
K. C. Chang,
Methods in Nonlinear Analysis, Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2005. |
[2] |
J. P. Ma,
(1-2) Inverses of operators between banach spaces and local conjugacy theorem, Chinese Ann. Math. Ser. B, 20 (1999), 57-62.
doi: 10.1142/S0252959999000084. |
[3] |
J. P. Ma,
A generalized preimage theorem in global analysis, Sci. China. Ser. A, 44 (2001), 299-303.
doi: 10.1007/BF02878710. |
[4] |
J. P. Ma,
A generalized transversality in global analysis, Pacific J.Math., 236 (2008), 357-371.
doi: 10.2140/pjm.2008.236.357. |
[5] |
M. Z. Nashed,
Generalized Inverses and Applications, New York-San Francisco-London: Academic Pr. , 1976. |
[6] |
E. Zeidler,
Nonlinear Functional Analysis and its Applications, Springer Verlag, New York-Berline, 1988.
doi: 10.1007/978-1-4612-4838-5. |
show all references
References:
[1] |
K. C. Chang,
Methods in Nonlinear Analysis, Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2005. |
[2] |
J. P. Ma,
(1-2) Inverses of operators between banach spaces and local conjugacy theorem, Chinese Ann. Math. Ser. B, 20 (1999), 57-62.
doi: 10.1142/S0252959999000084. |
[3] |
J. P. Ma,
A generalized preimage theorem in global analysis, Sci. China. Ser. A, 44 (2001), 299-303.
doi: 10.1007/BF02878710. |
[4] |
J. P. Ma,
A generalized transversality in global analysis, Pacific J.Math., 236 (2008), 357-371.
doi: 10.2140/pjm.2008.236.357. |
[5] |
M. Z. Nashed,
Generalized Inverses and Applications, New York-San Francisco-London: Academic Pr. , 1976. |
[6] |
E. Zeidler,
Nonlinear Functional Analysis and its Applications, Springer Verlag, New York-Berline, 1988.
doi: 10.1007/978-1-4612-4838-5. |


[1] |
Ruhua Wang, Senjian An, Wanquan Liu, Ling Li. Fixed-point algorithms for inverse of residual rectifier neural networks. Mathematical Foundations of Computing, 2021, 4 (1) : 31-44. doi: 10.3934/mfc.2020024 |
[2] |
Bruno Sixou, Cyril Mory. Kullback-Leibler residual and regularization for inverse problems with noisy data and noisy operator. Inverse Problems and Imaging, 2019, 13 (5) : 1113-1137. doi: 10.3934/ipi.2019050 |
[3] |
Sina Greenwood, Rolf Suabedissen. 2-manifolds and inverse limits of set-valued functions on intervals. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5693-5706. doi: 10.3934/dcds.2017246 |
[4] |
Jiangfeng Huang, Zhiliang Deng, Liwei Xu. A Bayesian level set method for an inverse medium scattering problem in acoustics. Inverse Problems and Imaging, 2021, 15 (5) : 1077-1097. doi: 10.3934/ipi.2021029 |
[5] |
Guillaume Bal, Alexandre Jollivet. Generalized stability estimates in inverse transport theory. Inverse Problems and Imaging, 2018, 12 (1) : 59-90. doi: 10.3934/ipi.2018003 |
[6] |
Tran Ngoc Thang, Nguyen Thi Bach Kim. Outcome space algorithm for generalized multiplicative problems and optimization over the efficient set. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1417-1433. doi: 10.3934/jimo.2016.12.1417 |
[7] |
Qingbang Zhang, Caozong Cheng, Xuanxuan Li. Generalized minimax theorems for two set-valued mappings. Journal of Industrial and Management Optimization, 2013, 9 (1) : 1-12. doi: 10.3934/jimo.2013.9.1 |
[8] |
Alireza Ghaffari Hadigheh, Tamás Terlaky. Generalized support set invariancy sensitivity analysis in linear optimization. Journal of Industrial and Management Optimization, 2006, 2 (1) : 1-18. doi: 10.3934/jimo.2006.2.1 |
[9] |
Behrouz Kheirfam, Kamal mirnia. Comments on ''Generalized support set invariancy sensitivity analysis in linear optimization''. Journal of Industrial and Management Optimization, 2008, 4 (3) : 611-616. doi: 10.3934/jimo.2008.4.611 |
[10] |
Kazuhiro Kawamura. Mean dimension of shifts of finite type and of generalized inverse limits. Discrete and Continuous Dynamical Systems, 2020, 40 (8) : 4767-4775. doi: 10.3934/dcds.2020200 |
[11] |
Laurent Bourgeois, Houssem Haddar. Identification of generalized impedance boundary conditions in inverse scattering problems. Inverse Problems and Imaging, 2010, 4 (1) : 19-38. doi: 10.3934/ipi.2010.4.19 |
[12] |
Michael Kiermaier, Reinhard Laue. Derived and residual subspace designs. Advances in Mathematics of Communications, 2015, 9 (1) : 105-115. doi: 10.3934/amc.2015.9.105 |
[13] |
Wangtao Lu, Shingyu Leung, Jianliang Qian. An improved fast local level set method for three-dimensional inverse gravimetry. Inverse Problems and Imaging, 2015, 9 (2) : 479-509. doi: 10.3934/ipi.2015.9.479 |
[14] |
Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems and Imaging, 2021, 15 (3) : 387-413. doi: 10.3934/ipi.2020073 |
[15] |
Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. Journal of Industrial and Management Optimization, 2021, 17 (2) : 869-887. doi: 10.3934/jimo.2020002 |
[16] |
S. Yu. Pilyugin, Kazuhiro Sakai, O. A. Tarakanov. Transversality properties and $C^1$-open sets of diffeomorphisms with weak shadowing. Discrete and Continuous Dynamical Systems, 2006, 16 (4) : 871-882. doi: 10.3934/dcds.2006.16.871 |
[17] |
Yi Wang, Dun Zhou. Transversality for time-periodic competitive-cooperative tridiagonal systems. Discrete and Continuous Dynamical Systems - B, 2015, 20 (6) : 1821-1830. doi: 10.3934/dcdsb.2015.20.1821 |
[18] |
F. Balibrea, J. C. Valverde. Extreme degenerations for some generic bifurcations and new transversality conditions. Conference Publications, 2001, 2001 (Special) : 22-30. doi: 10.3934/proc.2001.2001.22 |
[19] |
Gunther Uhlmann, Jenn-Nan Wang. Unique continuation property for the elasticity with general residual stress. Inverse Problems and Imaging, 2009, 3 (2) : 309-317. doi: 10.3934/ipi.2009.3.309 |
[20] |
Rebecca Vandiver. Effect of residual stress on peak cap stress in arteries. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1199-1214. doi: 10.3934/mbe.2014.11.1199 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]