October  2017, 10(5): 1043-1050. doi: 10.3934/dcdss.2017055

A kind of generalized transversality theorem for $C^r$ mapping with parameter

1. 

Department of Mathematics, Jilin University, Changchun, 130012, China

2. 

School of Science, Qiqihar University, Qiqihar, 161006, China

Received  August 2016 Revised  January 2017 Published  June 2017

Fund Project: The author is supported by NSFC grant No.11671070, Science Foundation of Heilongjiang Province of China No.QC2016008, and the Fundamental Research Funds for Education Department of Heilongjiang Province No.135109234.

The author considers a generalized transversality theorem of the mappings with parameter in infinite dimensional Banach space. If the mapping is generalized transversal to a single point set, and in the sense of exterior parameters, the mapping is a Fredholm operator, then there exists a residual set of parameter, such that the Fredholm operator is generalized transversal to the single point set.

Citation: Qiang Li. A kind of generalized transversality theorem for $C^r$ mapping with parameter. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1043-1050. doi: 10.3934/dcdss.2017055
References:
[1]

K. C. Chang, Methods in Nonlinear Analysis, Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2005.  Google Scholar

[2]

J. P. Ma, (1-2) Inverses of operators between banach spaces and local conjugacy theorem, Chinese Ann. Math. Ser. B, 20 (1999), 57-62.  doi: 10.1142/S0252959999000084.  Google Scholar

[3]

J. P. Ma, A generalized preimage theorem in global analysis, Sci. China. Ser. A, 44 (2001), 299-303.  doi: 10.1007/BF02878710.  Google Scholar

[4]

J. P. Ma, A generalized transversality in global analysis, Pacific J.Math., 236 (2008), 357-371.  doi: 10.2140/pjm.2008.236.357.  Google Scholar

[5]

M. Z. Nashed, Generalized Inverses and Applications, New York-San Francisco-London: Academic Pr. , 1976.  Google Scholar

[6]

E. Zeidler, Nonlinear Functional Analysis and its Applications, Springer Verlag, New York-Berline, 1988. doi: 10.1007/978-1-4612-4838-5.  Google Scholar

show all references

References:
[1]

K. C. Chang, Methods in Nonlinear Analysis, Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2005.  Google Scholar

[2]

J. P. Ma, (1-2) Inverses of operators between banach spaces and local conjugacy theorem, Chinese Ann. Math. Ser. B, 20 (1999), 57-62.  doi: 10.1142/S0252959999000084.  Google Scholar

[3]

J. P. Ma, A generalized preimage theorem in global analysis, Sci. China. Ser. A, 44 (2001), 299-303.  doi: 10.1007/BF02878710.  Google Scholar

[4]

J. P. Ma, A generalized transversality in global analysis, Pacific J.Math., 236 (2008), 357-371.  doi: 10.2140/pjm.2008.236.357.  Google Scholar

[5]

M. Z. Nashed, Generalized Inverses and Applications, New York-San Francisco-London: Academic Pr. , 1976.  Google Scholar

[6]

E. Zeidler, Nonlinear Functional Analysis and its Applications, Springer Verlag, New York-Berline, 1988. doi: 10.1007/978-1-4612-4838-5.  Google Scholar

Figure 1.  $f(s,t)=(s,s^3,t)$ is generalized transversal to $P=\{(0,0,z)\mid z\in \mathbb{R}\}$ mod $\mathbb{R}^3$
Figure 2.  $F(u,s)=(e^{u^2+s^2}-e,u^2+s^2-1)$ is generalized transversal to $P=\{\theta\}$ mod $\mathbb{R}^2$
[1]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, 2021, 15 (3) : 387-413. doi: 10.3934/ipi.2020073

[2]

Kuei-Hu Chang. A novel risk ranking method based on the single valued neutrosophic set. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021065

[3]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[4]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[5]

Sergei Avdonin, Julian Edward. An inverse problem for quantum trees with observations at interior vertices. Networks & Heterogeneous Media, 2021, 16 (2) : 317-339. doi: 10.3934/nhm.2021008

[6]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[7]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[8]

Ethan Akin, Julia Saccamano. Generalized intransitive dice II: Partition constructions. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021005

[9]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[10]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, 2021, 15 (3) : 539-554. doi: 10.3934/ipi.2021004

[11]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, 2021, 15 (3) : 415-443. doi: 10.3934/ipi.2020074

[12]

Markus Harju, Jaakko Kultima, Valery Serov, Teemu Tyni. Two-dimensional inverse scattering for quasi-linear biharmonic operator. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021026

[13]

Caichun Chai, Tiaojun Xiao, Zhangwei Feng. Evolution of revenue preference for competing firms with nonlinear inverse demand. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021071

[14]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[15]

Shuting Chen, Zengji Du, Jiang Liu, Ke Wang. The dynamic properties of a generalized Kawahara equation with Kuramoto-Sivashinsky perturbation. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021098

[16]

Simão Correia, Mário Figueira. A generalized complex Ginzburg-Landau equation: Global existence and stability results. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021056

[17]

Zhenquan Zhang, Meiling Chen, Jiajun Zhang, Tianshou Zhou. Analysis of non-Markovian effects in generalized birth-death models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3717-3735. doi: 10.3934/dcdsb.2020254

[18]

Ricardo A. Podestá, Denis E. Videla. The weight distribution of irreducible cyclic codes associated with decomposable generalized Paley graphs. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021002

[19]

Michiyuki Watanabe. Inverse $N$-body scattering with the time-dependent hartree-fock approximation. Inverse Problems & Imaging, 2021, 15 (3) : 499-517. doi: 10.3934/ipi.2021002

[20]

Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex. Discrete & Continuous Dynamical Systems, 2018, 38 (2) : 615-650. doi: 10.3934/dcds.2018027

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (156)
  • HTML views (56)
  • Cited by (0)

Other articles
by authors

[Back to Top]