In this paper, we study a coupled two-cell Schnakenberg model with homogenous Neumann boundary condition, i.e.,
$\left\{ \begin{gathered} -d_1Δ u=a-u+u^2v+c(w-u),&\text{ in } Ω, \\-d_2Δ v=b-u^2v,&\text{ in } Ω , \\-d_1Δ w=a-w+w^2z+c(u-w),&\text{ in } Ω, \\-d_2Δ z=b-w^2z,&\text{ in } Ω, \\\dfrac{\partial u}{\partial ν}=\dfrac{\partial v}{\partial ν}=\dfrac{\partial w}{\partial ν}=\dfrac{\partial z}{\partial ν}=0, &\text{ on } \partialΩ.\end{gathered} \right.$
We give a priori estimate to the positive solution. Meanwhile, we obtain the non-existence and existence of positive non-constant solution as parameters $ d_1, d_2, a$ and b changes.
Citation: |
H. I. Abdel-Gawad
and A. M. El-Shrae
, Symmetric patterns in the Dirichlet problem for a two-cell cubic autocatalytor reaction model, Applied Mathematics and Computation, 150 (2004)
, 623-645.
doi: 10.1016/S0096-3003(03)00295-9.![]() ![]() ![]() |
|
M. Ghergu and V. D. Radulescu,
Nonlinear PDEs: Mathematical Models in Biology, Chemistry and Population Genetics, Springer, 2012.
doi: 10.1007/978-3-642-22664-9.![]() ![]() ![]() |
|
P. Gormley
, K. Li
and G. W. Irwin
, Modelling molecular interaction pathways using a two-stage identification algorithm, Systems and Synthetic Biology, 1 (2007)
, 145-160.
doi: 10.1007/s11693-008-9012-5.![]() ![]() |
|
D. Iron
, J. C. Wei
and M. Winter
, Stability analysis of Turing patterns generated by the Schnakenberg model, Journal of Mathematical Biology, 49 (2004)
, 358-390.
doi: 10.1007/s00285-003-0258-y.![]() ![]() ![]() |
|
H. Kitano
, Systems biology: A brief overview, Science, 295 (2002)
, 1662-1664.
doi: 10.1126/science.1069492.![]() ![]() |
|
Y. Li
, Steady-state solution for a general Schnakenberg model, Nonlinear Anal. Real World Appl., 12 (2011)
, 1985-1990.
doi: 10.1016/j.nonrwa.2010.12.014.![]() ![]() ![]() |
|
Y. Lou
and W. M. Ni
, Diffusion, self-diffusion and cross-diffusion, Journal of Differential Equations, 131 (1996)
, 79-131.
doi: 10.1006/jdeq.1996.0157.![]() ![]() ![]() |
|
Y. Lou
and W. M. Ni
, Diffusion vs cross-diffusion: An elliptic approach, Journal of Differential Equations, 154 (1999)
, 157-190.
doi: 10.1006/jdeq.1998.3559.![]() ![]() ![]() |
|
J. D. Murray,
Mathematical Biology: Ⅰ. An Introduction, volume 2. Springer, 2002.
![]() ![]() |
|
R. Peng
and M. Wang
, Positive steady-state solutions of the noyes--field model for belousov-zhabotinskii reaction, Nonlinear Analysis: Theory, Methods Applications, 56 (2004)
, 451-464.
doi: 10.1016/j.na.2003.09.020.![]() ![]() ![]() |
|
M. R. Ricard
and S. Mischler
, Turing instabilities at hopf bifurcation, Journal of Nonlinear Science, 19 (2009)
, 467-496.
doi: 10.1007/s00332-009-9041-6.![]() ![]() ![]() |
|
J. Schnakenberg
, Simple chemical reaction systems with limit cycle behaviour, Journal of Theoretical Biology, 81 (1979)
, 389-400.
doi: 10.1016/0022-5193(79)90042-0.![]() ![]() ![]() |
|
I. Schreiber
and M. Marek
, Strange attractors in coupled reaction-diffusion cells, Physica D: Nonlinear Phenomena, 5 (1982)
, 258-272.
doi: 10.1016/0167-2789(82)90021-5.![]() ![]() ![]() |
|
C. K. Tyson
and B. Novak
, Network dynamics and cell physiology, Nature Reviews Molecular Cell Biology, 2 (2001)
, 908-916.
![]() |
|
J. C. Wei
and M. Winter
, Flow-distributed spikes for Schnakenberg kinetics, J. Math. Biol., 64 (2012)
, 211-254.
doi: 10.1007/s00285-011-0412-x.![]() ![]() ![]() |
|
C. Xu
and J. J. Wei
, Hopf bifurcation analysis in a one-dimensional Schnakenberg reaction-diffusion model, Nonlinear Anal. Real World Appl., 13 (2012)
, 1961-1977.
doi: 10.1016/j.nonrwa.2012.01.001.![]() ![]() ![]() |
|
Q. X. Ye and Z. Y. Li,
Introduction to Reaction-Diffusion Equation, bejing: Sci, 1990.
![]() ![]() |
|
Y. You, Global attractor of a coupled two-cell brusselator model, Fields Inst. Commun., 64 (2013), 319-352, arXiv: 0906.4345.
doi: 10.1007/978-1-4614-4523-4_13.![]() ![]() ![]() |
|
J. Zhou
and C. L. Mu
, Pattern formation of a coupled two-cell brusselator model, Journal of Mathematical Analysis and Applications, 366 (2010)
, 679-693.
doi: 10.1016/j.jmaa.2009.12.021.![]() ![]() ![]() |
|
W. J. Zuo
and J. J. Wei
, Multiple bifurcations and spatiotemporal patterns for a coupled two-cell Brusselator model, Dynamics of Partial Differential Equations, 8 (2011)
, 363-384.
![]() ![]() |