\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On concentration of semi-classical solitary waves for a generalized Kadomtsev-Petviashvili equation

  • * Corresponding author: Yuanhong Wei

    * Corresponding author: Yuanhong Wei 

Y. Wei is supported by NSFC(grant No. 11301209). Y. Li is supported by National Basic Research Program of China (grant No. 2013CB834100), NSFC(grant No. 11571065) and NSFC(grant No. 11171132). X. Yang is supported by NSFC(grant No. 11201173)

Abstract Full Text(HTML) Related Papers Cited by
  • The present paper is concerned with semi-classical solitary wave solutions of a generalized Kadomtsev-Petviashvili equation in $\mathbb{R}^{2}$. Parameter $\varepsilon$ and potential $V(x,y)$ are included in the problem. The existence of the least energy solution is established for all $\varepsilon>0$ small. Moreover, we point out that these solutions converge to a least energy solution of the associated limit problem and concentrate to the minimum point of the potential as $\varepsilon \to 0$.

    Mathematics Subject Classification: Primary: 35A15; Secondary: 35Q53.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  •   M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, volume 149 of London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, 1991. doi: 10.1017/CBO9780511623998.
      M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, volume 4 of SIAM Studies in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pa. , 1981.
      D. Boris , T. Grava  and  C. Klein , On critical behaviour in generalized Kadomtsev-Petviashvili equations, Physica D: Nonlinear Phenomena, 333 (2016) , 157-170.  doi: 10.1016/j.physd.2016.01.011.
      A. De Bouard  and  J.-C. Saut , Solitary waves of generalized Kadomtsev-Petviashvili equations, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 14 (1997) , 211-236.  doi: 10.1016/S0294-1449(97)80145-X.
      J. Bourgain , On the cauchy problem for the Kadomstev-Petviashvili equation, Geometric and Functional Analysis, 3 (1993) , 315-341.  doi: 10.1007/BF01896259.
      M. del Pino  and  P. L. Felmer , Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differential Equations, 4 (1996) , 121-137.  doi: 10.1007/BF01189950.
      W. Ding  and  W. Ni , On the existence of positive entire solutions of a semilinear elliptic equation, Arch. Rational Mech. Anal., 91 (1986) , 283-308.  doi: 10.1007/BF00282336.
      Y. Ding , Semi-classical ground states concentrating on the nonlinear potential for a Dirac equation, J. Differential Equations, 249 (2010) , 1015-1034.  doi: 10.1016/j.jde.2010.03.022.
      Y. Ding  and  X. Liu , Semi-classical limits of ground states of a nonlinear Dirac equation, J. Differential Equations, 252 (2012) , 4962-4987.  doi: 10.1016/j.jde.2012.01.023.
      Y. Ding  and  B. Ruf , Existence and concentration of semiclassical solutions for Dirac equations with critical nonlinearities, SIAM J. Math. Anal., 44 (2012) , 3755-3785.  doi: 10.1137/110850670.
      Y. Ding  and  T. Xu , Localized concentration of semi-classical states for nonlinear Dirac equations, Arch. Ration. Mech. Anal., 216 (2015) , 415-447.  doi: 10.1007/s00205-014-0811-4.
      B. B. Kadomtsev and V. I. Petviashvili, On the stability of solitary waves in weakly dispersing media, Soviet Physics Doklady, 15 (1970), 539.
      C. Klein  and  J.-C. Saut , A numerical approach to blow-up issues for dispersive perturbations of Burgers' equation, Phys. D, 295/296 (2015) , 46-65.  doi: 10.1016/j.physd.2014.12.004.
      Y. Liu , Blow up and instability of solitary-wave solutions to a generalized Kadomtsev-Petviashvili equation, Trans. Amer. Math. Soc., 353 (2001) , 191-208.  doi: 10.1090/S0002-9947-00-02465-X.
      Y. Liu , Strong instability of solitary-wave solutions to a Kadomtsev-Petviashvili equation in three dimensions, J. Differential Equations, 180 (2002) , 153-170.  doi: 10.1006/jdeq.2001.4054.
      Y. Liu  and  X.-P. Wang , Nonlinear stability of solitary waves of a generalized Kadomtsev-Petviashvili equation, Comm. Math. Phys., 183 (1997) , 253-266. 
      L. Molinet , J. C. Saut  and  N. Tzvetkov , Global well-posedness for the KP-Ⅰ equation, Math. Ann., 324 (2002) , 255-275.  doi: 10.1007/s00208-002-0338-0.
      L. Molinet , J.-C. Saut  and  N. Tzvetkov , Well-posedness and ill-posedness results for the Kadomtsev-Petviashvili-Ⅰ equation, Duke Math. J., 115 (2002) , 353-384.  doi: 10.1215/S0012-7094-02-11525-7.
      L. Molinet , J.C. Saut  and  N. Tzvetkov , Remarks on the mass constraint for KP-type equations, SIAM J. Math. Anal., 39 (2007) , 627-641.  doi: 10.1137/060654256.
      J.-C. Saut , Remarks on the generalized Kadomtsev-Petviashvili equations, Indiana Univ. Math. J., 42 (1993) , 1011-1026.  doi: 10.1512/iumj.1993.42.42047.
      S. Ukai , Local solutions of the Kadomtsev-Petviashvili equation, J. Fac. Sci. Univ. Tokyo, Sect. IA Math, 36 (1989) , 193-209. 
      X. Wang , On concentration of positive bound states of nonlinear Schrödinger equations, Comm. Math. Phys., 153 (1993) , 229-244.  doi: 10.1007/BF02096642.
      M. Willem  and  Z.-Q. Wang , A multiplicity result for the generalized Kadomtsev-Petviashvili equation, Journal of the Juliusz Schauder Center, 7 (1996) , 261-270. 
      M. Willem, Minimax Theorems, volume 24. Birkhäuser Boston, Inc. , Boston, MA, 1996. doi: 10.1007/978-1-4612-4146-1.
      W. Zou , Solitary waves of the generalized Kadomtsev-Petviashvili equations, Appl. Math. Lett., 15 (2002) , 35-39.  doi: 10.1016/S0893-9659(01)00089-1.
  • 加载中
SHARE

Article Metrics

HTML views(476) PDF downloads(289) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return