October  2017, 10(5): 1095-1106. doi: 10.3934/dcdss.2017059

On concentration of semi-classical solitary waves for a generalized Kadomtsev-Petviashvili equation

a. 

School of Mathematics, Jilin University, Changchun 130012, China

b. 

School of Mathematics and Statistics, and Center for Mathematics and Interdisciplinary Sciences, Northeast Normal University, Changchun 130024, China

c. 

State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130012, China

* Corresponding author: Yuanhong Wei

Received  November 2016 Revised  November 2016 Published  June 2017

Fund Project: Y. Wei is supported by NSFC(grant No. 11301209). Y. Li is supported by National Basic Research Program of China (grant No. 2013CB834100), NSFC(grant No. 11571065) and NSFC(grant No. 11171132). X. Yang is supported by NSFC(grant No. 11201173).

The present paper is concerned with semi-classical solitary wave solutions of a generalized Kadomtsev-Petviashvili equation in $\mathbb{R}^{2}$. Parameter $\varepsilon$ and potential $V(x,y)$ are included in the problem. The existence of the least energy solution is established for all $\varepsilon>0$ small. Moreover, we point out that these solutions converge to a least energy solution of the associated limit problem and concentrate to the minimum point of the potential as $\varepsilon \to 0$.

Citation: Yuanhong Wei, Yong Li, Xue Yang. On concentration of semi-classical solitary waves for a generalized Kadomtsev-Petviashvili equation. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1095-1106. doi: 10.3934/dcdss.2017059
References:
[1]

M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, volume 149 of London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, 1991. doi: 10.1017/CBO9780511623998.  Google Scholar

[2]

M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, volume 4 of SIAM Studies in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pa. , 1981.  Google Scholar

[3]

D. BorisT. Grava and C. Klein, On critical behaviour in generalized Kadomtsev-Petviashvili equations, Physica D: Nonlinear Phenomena, 333 (2016), 157-170.  doi: 10.1016/j.physd.2016.01.011.  Google Scholar

[4]

A. De Bouard and J.-C. Saut, Solitary waves of generalized Kadomtsev-Petviashvili equations, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 14 (1997), 211-236.  doi: 10.1016/S0294-1449(97)80145-X.  Google Scholar

[5]

J. Bourgain, On the cauchy problem for the Kadomstev-Petviashvili equation, Geometric and Functional Analysis, 3 (1993), 315-341.  doi: 10.1007/BF01896259.  Google Scholar

[6]

M. del Pino and P. L. Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differential Equations, 4 (1996), 121-137.  doi: 10.1007/BF01189950.  Google Scholar

[7]

W. Ding and W. Ni, On the existence of positive entire solutions of a semilinear elliptic equation, Arch. Rational Mech. Anal., 91 (1986), 283-308.  doi: 10.1007/BF00282336.  Google Scholar

[8]

Y. Ding, Semi-classical ground states concentrating on the nonlinear potential for a Dirac equation, J. Differential Equations, 249 (2010), 1015-1034.  doi: 10.1016/j.jde.2010.03.022.  Google Scholar

[9]

Y. Ding and X. Liu, Semi-classical limits of ground states of a nonlinear Dirac equation, J. Differential Equations, 252 (2012), 4962-4987.  doi: 10.1016/j.jde.2012.01.023.  Google Scholar

[10]

Y. Ding and B. Ruf, Existence and concentration of semiclassical solutions for Dirac equations with critical nonlinearities, SIAM J. Math. Anal., 44 (2012), 3755-3785.  doi: 10.1137/110850670.  Google Scholar

[11]

Y. Ding and T. Xu, Localized concentration of semi-classical states for nonlinear Dirac equations, Arch. Ration. Mech. Anal., 216 (2015), 415-447.  doi: 10.1007/s00205-014-0811-4.  Google Scholar

[12]

B. B. Kadomtsev and V. I. Petviashvili, On the stability of solitary waves in weakly dispersing media, Soviet Physics Doklady, 15 (1970), 539. Google Scholar

[13]

C. Klein and J.-C. Saut, A numerical approach to blow-up issues for dispersive perturbations of Burgers' equation, Phys. D, 295/296 (2015), 46-65.  doi: 10.1016/j.physd.2014.12.004.  Google Scholar

[14]

Y. Liu, Blow up and instability of solitary-wave solutions to a generalized Kadomtsev-Petviashvili equation, Trans. Amer. Math. Soc., 353 (2001), 191-208.  doi: 10.1090/S0002-9947-00-02465-X.  Google Scholar

[15]

Y. Liu, Strong instability of solitary-wave solutions to a Kadomtsev-Petviashvili equation in three dimensions, J. Differential Equations, 180 (2002), 153-170.  doi: 10.1006/jdeq.2001.4054.  Google Scholar

[16]

Y. Liu and X.-P. Wang, Nonlinear stability of solitary waves of a generalized Kadomtsev-Petviashvili equation, Comm. Math. Phys., 183 (1997), 253-266.   Google Scholar

[17]

L. MolinetJ. C. Saut and N. Tzvetkov, Global well-posedness for the KP-Ⅰ equation, Math. Ann., 324 (2002), 255-275.  doi: 10.1007/s00208-002-0338-0.  Google Scholar

[18]

L. MolinetJ.-C. Saut and N. Tzvetkov, Well-posedness and ill-posedness results for the Kadomtsev-Petviashvili-Ⅰ equation, Duke Math. J., 115 (2002), 353-384.  doi: 10.1215/S0012-7094-02-11525-7.  Google Scholar

[19]

L. MolinetJ.C. Saut and N. Tzvetkov, Remarks on the mass constraint for KP-type equations, SIAM J. Math. Anal., 39 (2007), 627-641.  doi: 10.1137/060654256.  Google Scholar

[20]

J.-C. Saut, Remarks on the generalized Kadomtsev-Petviashvili equations, Indiana Univ. Math. J., 42 (1993), 1011-1026.  doi: 10.1512/iumj.1993.42.42047.  Google Scholar

[21]

S. Ukai, Local solutions of the Kadomtsev-Petviashvili equation, J. Fac. Sci. Univ. Tokyo, Sect. IA Math, 36 (1989), 193-209.   Google Scholar

[22]

X. Wang, On concentration of positive bound states of nonlinear Schrödinger equations, Comm. Math. Phys., 153 (1993), 229-244.  doi: 10.1007/BF02096642.  Google Scholar

[23]

M. Willem and Z.-Q. Wang, A multiplicity result for the generalized Kadomtsev-Petviashvili equation, Journal of the Juliusz Schauder Center, 7 (1996), 261-270.   Google Scholar

[24]

M. Willem, Minimax Theorems, volume 24. Birkhäuser Boston, Inc. , Boston, MA, 1996. doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[25]

W. Zou, Solitary waves of the generalized Kadomtsev-Petviashvili equations, Appl. Math. Lett., 15 (2002), 35-39.  doi: 10.1016/S0893-9659(01)00089-1.  Google Scholar

show all references

References:
[1]

M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, volume 149 of London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, 1991. doi: 10.1017/CBO9780511623998.  Google Scholar

[2]

M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, volume 4 of SIAM Studies in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pa. , 1981.  Google Scholar

[3]

D. BorisT. Grava and C. Klein, On critical behaviour in generalized Kadomtsev-Petviashvili equations, Physica D: Nonlinear Phenomena, 333 (2016), 157-170.  doi: 10.1016/j.physd.2016.01.011.  Google Scholar

[4]

A. De Bouard and J.-C. Saut, Solitary waves of generalized Kadomtsev-Petviashvili equations, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 14 (1997), 211-236.  doi: 10.1016/S0294-1449(97)80145-X.  Google Scholar

[5]

J. Bourgain, On the cauchy problem for the Kadomstev-Petviashvili equation, Geometric and Functional Analysis, 3 (1993), 315-341.  doi: 10.1007/BF01896259.  Google Scholar

[6]

M. del Pino and P. L. Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differential Equations, 4 (1996), 121-137.  doi: 10.1007/BF01189950.  Google Scholar

[7]

W. Ding and W. Ni, On the existence of positive entire solutions of a semilinear elliptic equation, Arch. Rational Mech. Anal., 91 (1986), 283-308.  doi: 10.1007/BF00282336.  Google Scholar

[8]

Y. Ding, Semi-classical ground states concentrating on the nonlinear potential for a Dirac equation, J. Differential Equations, 249 (2010), 1015-1034.  doi: 10.1016/j.jde.2010.03.022.  Google Scholar

[9]

Y. Ding and X. Liu, Semi-classical limits of ground states of a nonlinear Dirac equation, J. Differential Equations, 252 (2012), 4962-4987.  doi: 10.1016/j.jde.2012.01.023.  Google Scholar

[10]

Y. Ding and B. Ruf, Existence and concentration of semiclassical solutions for Dirac equations with critical nonlinearities, SIAM J. Math. Anal., 44 (2012), 3755-3785.  doi: 10.1137/110850670.  Google Scholar

[11]

Y. Ding and T. Xu, Localized concentration of semi-classical states for nonlinear Dirac equations, Arch. Ration. Mech. Anal., 216 (2015), 415-447.  doi: 10.1007/s00205-014-0811-4.  Google Scholar

[12]

B. B. Kadomtsev and V. I. Petviashvili, On the stability of solitary waves in weakly dispersing media, Soviet Physics Doklady, 15 (1970), 539. Google Scholar

[13]

C. Klein and J.-C. Saut, A numerical approach to blow-up issues for dispersive perturbations of Burgers' equation, Phys. D, 295/296 (2015), 46-65.  doi: 10.1016/j.physd.2014.12.004.  Google Scholar

[14]

Y. Liu, Blow up and instability of solitary-wave solutions to a generalized Kadomtsev-Petviashvili equation, Trans. Amer. Math. Soc., 353 (2001), 191-208.  doi: 10.1090/S0002-9947-00-02465-X.  Google Scholar

[15]

Y. Liu, Strong instability of solitary-wave solutions to a Kadomtsev-Petviashvili equation in three dimensions, J. Differential Equations, 180 (2002), 153-170.  doi: 10.1006/jdeq.2001.4054.  Google Scholar

[16]

Y. Liu and X.-P. Wang, Nonlinear stability of solitary waves of a generalized Kadomtsev-Petviashvili equation, Comm. Math. Phys., 183 (1997), 253-266.   Google Scholar

[17]

L. MolinetJ. C. Saut and N. Tzvetkov, Global well-posedness for the KP-Ⅰ equation, Math. Ann., 324 (2002), 255-275.  doi: 10.1007/s00208-002-0338-0.  Google Scholar

[18]

L. MolinetJ.-C. Saut and N. Tzvetkov, Well-posedness and ill-posedness results for the Kadomtsev-Petviashvili-Ⅰ equation, Duke Math. J., 115 (2002), 353-384.  doi: 10.1215/S0012-7094-02-11525-7.  Google Scholar

[19]

L. MolinetJ.C. Saut and N. Tzvetkov, Remarks on the mass constraint for KP-type equations, SIAM J. Math. Anal., 39 (2007), 627-641.  doi: 10.1137/060654256.  Google Scholar

[20]

J.-C. Saut, Remarks on the generalized Kadomtsev-Petviashvili equations, Indiana Univ. Math. J., 42 (1993), 1011-1026.  doi: 10.1512/iumj.1993.42.42047.  Google Scholar

[21]

S. Ukai, Local solutions of the Kadomtsev-Petviashvili equation, J. Fac. Sci. Univ. Tokyo, Sect. IA Math, 36 (1989), 193-209.   Google Scholar

[22]

X. Wang, On concentration of positive bound states of nonlinear Schrödinger equations, Comm. Math. Phys., 153 (1993), 229-244.  doi: 10.1007/BF02096642.  Google Scholar

[23]

M. Willem and Z.-Q. Wang, A multiplicity result for the generalized Kadomtsev-Petviashvili equation, Journal of the Juliusz Schauder Center, 7 (1996), 261-270.   Google Scholar

[24]

M. Willem, Minimax Theorems, volume 24. Birkhäuser Boston, Inc. , Boston, MA, 1996. doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[25]

W. Zou, Solitary waves of the generalized Kadomtsev-Petviashvili equations, Appl. Math. Lett., 15 (2002), 35-39.  doi: 10.1016/S0893-9659(01)00089-1.  Google Scholar

[1]

Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3579-3614. doi: 10.3934/dcds.2021008

[2]

Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021011

[3]

Tomoyuki Tanaka, Kyouhei Wakasa. On the critical decay for the wave equation with a cubic convolution in 3D. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021048

[4]

Wided Kechiche. Global attractor for a nonlinear Schrödinger equation with a nonlinearity concentrated in one point. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021031

[5]

Andrew Comech, Elena Kopylova. Orbital stability and spectral properties of solitary waves of Klein–Gordon equation with concentrated nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021063

[6]

Yu Yang, Jinling Zhou, Cheng-Hsiung Hsu. Critical traveling wave solutions for a vaccination model with general incidence. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021087

[7]

Bouthaina Abdelhedi, Hatem Zaag. Single point blow-up and final profile for a perturbed nonlinear heat equation with a gradient and a non-local term. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021032

[8]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[9]

Claudianor O. Alves, Giovany M. Figueiredo, Riccardo Molle. Multiple positive bound state solutions for a critical Choquard equation. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021061

[10]

Jiacheng Wang, Peng-Fei Yao. On the attractor for a semilinear wave equation with variable coefficients and nonlinear boundary dissipation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021043

[11]

Hui Yang, Yuzhu Han. Initial boundary value problem for a strongly damped wave equation with a general nonlinearity. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021019

[12]

Emanuela R. S. Coelho, Valéria N. Domingos Cavalcanti, Vinicius A. Peralta. Exponential stability for a transmission problem of a nonlinear viscoelastic wave equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021055

[13]

Yanling Shi, Junxiang Xu. Quasi-periodic solutions for nonlinear wave equation with Liouvillean frequency. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3479-3490. doi: 10.3934/dcdsb.2020241

[14]

Pengyan Ding, Zhijian Yang. Well-posedness and attractor for a strongly damped wave equation with supercritical nonlinearity on $ \mathbb{R}^{N} $. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1059-1076. doi: 10.3934/cpaa.2021006

[15]

Yuanqing Xu, Xiaoxiao Zheng, Jie Xin. New explicit and exact traveling wave solutions of (3+1)-dimensional KP equation. Mathematical Foundations of Computing, 2021  doi: 10.3934/mfc.2021006

[16]

Flank D. M. Bezerra, Rodiak N. Figueroa-López, Marcelo J. D. Nascimento. Fractional oscillon equations; solvability and connection with classical oscillon equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021067

[17]

Palash Sarkar, Subhadip Singha. Classical reduction of gap SVP to LWE: A concrete security analysis. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021004

[18]

Ugo Bessi. Another point of view on Kusuoka's measure. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3241-3271. doi: 10.3934/dcds.2020404

[19]

Daniele Cassani, Luca Vilasi, Jianjun Zhang. Concentration phenomena at saddle points of potential for Schrödinger-Poisson systems. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021039

[20]

Vakhtang Putkaradze, Stuart Rogers. Numerical simulations of a rolling ball robot actuated by internal point masses. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 143-207. doi: 10.3934/naco.2020021

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (117)
  • HTML views (68)
  • Cited by (0)

Other articles
by authors

[Back to Top]