-
Previous Article
Invasion traveling wave solutions in temporally discrete random-diffusion systems with delays
- DCDS-S Home
- This Issue
-
Next Article
Dynamical behavior of a new oncolytic virotherapy model based on gene variation
On concentration of semi-classical solitary waves for a generalized Kadomtsev-Petviashvili equation
a. | School of Mathematics, Jilin University, Changchun 130012, China |
b. | School of Mathematics and Statistics, and Center for Mathematics and Interdisciplinary Sciences, Northeast Normal University, Changchun 130024, China |
c. | State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130012, China |
The present paper is concerned with semi-classical solitary wave solutions of a generalized Kadomtsev-Petviashvili equation in $\mathbb{R}^{2}$. Parameter $\varepsilon$ and potential $V(x,y)$ are included in the problem. The existence of the least energy solution is established for all $\varepsilon>0$ small. Moreover, we point out that these solutions converge to a least energy solution of the associated limit problem and concentrate to the minimum point of the potential as $\varepsilon \to 0$.
References:
[1] |
M. J. Ablowitz and P. A. Clarkson,
Solitons, Nonlinear Evolution Equations and Inverse Scattering, volume 149 of London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, 1991.
doi: 10.1017/CBO9780511623998. |
[2] |
M. J. Ablowitz and H. Segur,
Solitons and the Inverse Scattering Transform, volume 4 of SIAM Studies in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pa. , 1981. |
[3] |
D. Boris, T. Grava and C. Klein,
On critical behaviour in generalized Kadomtsev-Petviashvili equations, Physica D: Nonlinear Phenomena, 333 (2016), 157-170.
doi: 10.1016/j.physd.2016.01.011. |
[4] |
A. De Bouard and J.-C. Saut,
Solitary waves of generalized Kadomtsev-Petviashvili equations, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 14 (1997), 211-236.
doi: 10.1016/S0294-1449(97)80145-X. |
[5] |
J. Bourgain,
On the cauchy problem for the Kadomstev-Petviashvili equation, Geometric and Functional Analysis, 3 (1993), 315-341.
doi: 10.1007/BF01896259. |
[6] |
M. del Pino and P. L. Felmer,
Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differential Equations, 4 (1996), 121-137.
doi: 10.1007/BF01189950. |
[7] |
W. Ding and W. Ni,
On the existence of positive entire solutions of a semilinear elliptic equation, Arch. Rational Mech. Anal., 91 (1986), 283-308.
doi: 10.1007/BF00282336. |
[8] |
Y. Ding,
Semi-classical ground states concentrating on the nonlinear potential for a Dirac equation, J. Differential Equations, 249 (2010), 1015-1034.
doi: 10.1016/j.jde.2010.03.022. |
[9] |
Y. Ding and X. Liu,
Semi-classical limits of ground states of a nonlinear Dirac equation, J. Differential Equations, 252 (2012), 4962-4987.
doi: 10.1016/j.jde.2012.01.023. |
[10] |
Y. Ding and B. Ruf,
Existence and concentration of semiclassical solutions for Dirac equations with critical nonlinearities, SIAM J. Math. Anal., 44 (2012), 3755-3785.
doi: 10.1137/110850670. |
[11] |
Y. Ding and T. Xu,
Localized concentration of semi-classical states for nonlinear Dirac equations, Arch. Ration. Mech. Anal., 216 (2015), 415-447.
doi: 10.1007/s00205-014-0811-4. |
[12] |
B. B. Kadomtsev and V. I. Petviashvili, On the stability of solitary waves in weakly dispersing media,
Soviet Physics Doklady, 15 (1970), 539. |
[13] |
C. Klein and J.-C. Saut,
A numerical approach to blow-up issues for dispersive perturbations of Burgers' equation, Phys. D, 295/296 (2015), 46-65.
doi: 10.1016/j.physd.2014.12.004. |
[14] |
Y. Liu,
Blow up and instability of solitary-wave solutions to a generalized Kadomtsev-Petviashvili equation, Trans. Amer. Math. Soc., 353 (2001), 191-208.
doi: 10.1090/S0002-9947-00-02465-X. |
[15] |
Y. Liu,
Strong instability of solitary-wave solutions to a Kadomtsev-Petviashvili equation in three dimensions, J. Differential Equations, 180 (2002), 153-170.
doi: 10.1006/jdeq.2001.4054. |
[16] |
Y. Liu and X.-P. Wang,
Nonlinear stability of solitary waves of a generalized Kadomtsev-Petviashvili equation, Comm. Math. Phys., 183 (1997), 253-266.
|
[17] |
L. Molinet, J. C. Saut and N. Tzvetkov,
Global well-posedness for the KP-Ⅰ equation, Math. Ann., 324 (2002), 255-275.
doi: 10.1007/s00208-002-0338-0. |
[18] |
L. Molinet, J.-C. Saut and N. Tzvetkov,
Well-posedness and ill-posedness results for the Kadomtsev-Petviashvili-Ⅰ equation, Duke Math. J., 115 (2002), 353-384.
doi: 10.1215/S0012-7094-02-11525-7. |
[19] |
L. Molinet, J.C. Saut and N. Tzvetkov,
Remarks on the mass constraint for KP-type equations, SIAM J. Math. Anal., 39 (2007), 627-641.
doi: 10.1137/060654256. |
[20] |
J.-C. Saut,
Remarks on the generalized Kadomtsev-Petviashvili equations, Indiana Univ. Math. J., 42 (1993), 1011-1026.
doi: 10.1512/iumj.1993.42.42047. |
[21] |
S. Ukai,
Local solutions of the Kadomtsev-Petviashvili equation, J. Fac. Sci. Univ. Tokyo, Sect. IA Math, 36 (1989), 193-209.
|
[22] |
X. Wang,
On concentration of positive bound states of nonlinear Schrödinger equations, Comm. Math. Phys., 153 (1993), 229-244.
doi: 10.1007/BF02096642. |
[23] |
M. Willem and Z.-Q. Wang,
A multiplicity result for the generalized Kadomtsev-Petviashvili equation, Journal of the Juliusz Schauder Center, 7 (1996), 261-270.
|
[24] |
M. Willem,
Minimax Theorems, volume 24. Birkhäuser Boston, Inc. , Boston, MA, 1996.
doi: 10.1007/978-1-4612-4146-1. |
[25] |
W. Zou,
Solitary waves of the generalized Kadomtsev-Petviashvili equations, Appl. Math. Lett., 15 (2002), 35-39.
doi: 10.1016/S0893-9659(01)00089-1. |
show all references
References:
[1] |
M. J. Ablowitz and P. A. Clarkson,
Solitons, Nonlinear Evolution Equations and Inverse Scattering, volume 149 of London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, 1991.
doi: 10.1017/CBO9780511623998. |
[2] |
M. J. Ablowitz and H. Segur,
Solitons and the Inverse Scattering Transform, volume 4 of SIAM Studies in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pa. , 1981. |
[3] |
D. Boris, T. Grava and C. Klein,
On critical behaviour in generalized Kadomtsev-Petviashvili equations, Physica D: Nonlinear Phenomena, 333 (2016), 157-170.
doi: 10.1016/j.physd.2016.01.011. |
[4] |
A. De Bouard and J.-C. Saut,
Solitary waves of generalized Kadomtsev-Petviashvili equations, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 14 (1997), 211-236.
doi: 10.1016/S0294-1449(97)80145-X. |
[5] |
J. Bourgain,
On the cauchy problem for the Kadomstev-Petviashvili equation, Geometric and Functional Analysis, 3 (1993), 315-341.
doi: 10.1007/BF01896259. |
[6] |
M. del Pino and P. L. Felmer,
Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differential Equations, 4 (1996), 121-137.
doi: 10.1007/BF01189950. |
[7] |
W. Ding and W. Ni,
On the existence of positive entire solutions of a semilinear elliptic equation, Arch. Rational Mech. Anal., 91 (1986), 283-308.
doi: 10.1007/BF00282336. |
[8] |
Y. Ding,
Semi-classical ground states concentrating on the nonlinear potential for a Dirac equation, J. Differential Equations, 249 (2010), 1015-1034.
doi: 10.1016/j.jde.2010.03.022. |
[9] |
Y. Ding and X. Liu,
Semi-classical limits of ground states of a nonlinear Dirac equation, J. Differential Equations, 252 (2012), 4962-4987.
doi: 10.1016/j.jde.2012.01.023. |
[10] |
Y. Ding and B. Ruf,
Existence and concentration of semiclassical solutions for Dirac equations with critical nonlinearities, SIAM J. Math. Anal., 44 (2012), 3755-3785.
doi: 10.1137/110850670. |
[11] |
Y. Ding and T. Xu,
Localized concentration of semi-classical states for nonlinear Dirac equations, Arch. Ration. Mech. Anal., 216 (2015), 415-447.
doi: 10.1007/s00205-014-0811-4. |
[12] |
B. B. Kadomtsev and V. I. Petviashvili, On the stability of solitary waves in weakly dispersing media,
Soviet Physics Doklady, 15 (1970), 539. |
[13] |
C. Klein and J.-C. Saut,
A numerical approach to blow-up issues for dispersive perturbations of Burgers' equation, Phys. D, 295/296 (2015), 46-65.
doi: 10.1016/j.physd.2014.12.004. |
[14] |
Y. Liu,
Blow up and instability of solitary-wave solutions to a generalized Kadomtsev-Petviashvili equation, Trans. Amer. Math. Soc., 353 (2001), 191-208.
doi: 10.1090/S0002-9947-00-02465-X. |
[15] |
Y. Liu,
Strong instability of solitary-wave solutions to a Kadomtsev-Petviashvili equation in three dimensions, J. Differential Equations, 180 (2002), 153-170.
doi: 10.1006/jdeq.2001.4054. |
[16] |
Y. Liu and X.-P. Wang,
Nonlinear stability of solitary waves of a generalized Kadomtsev-Petviashvili equation, Comm. Math. Phys., 183 (1997), 253-266.
|
[17] |
L. Molinet, J. C. Saut and N. Tzvetkov,
Global well-posedness for the KP-Ⅰ equation, Math. Ann., 324 (2002), 255-275.
doi: 10.1007/s00208-002-0338-0. |
[18] |
L. Molinet, J.-C. Saut and N. Tzvetkov,
Well-posedness and ill-posedness results for the Kadomtsev-Petviashvili-Ⅰ equation, Duke Math. J., 115 (2002), 353-384.
doi: 10.1215/S0012-7094-02-11525-7. |
[19] |
L. Molinet, J.C. Saut and N. Tzvetkov,
Remarks on the mass constraint for KP-type equations, SIAM J. Math. Anal., 39 (2007), 627-641.
doi: 10.1137/060654256. |
[20] |
J.-C. Saut,
Remarks on the generalized Kadomtsev-Petviashvili equations, Indiana Univ. Math. J., 42 (1993), 1011-1026.
doi: 10.1512/iumj.1993.42.42047. |
[21] |
S. Ukai,
Local solutions of the Kadomtsev-Petviashvili equation, J. Fac. Sci. Univ. Tokyo, Sect. IA Math, 36 (1989), 193-209.
|
[22] |
X. Wang,
On concentration of positive bound states of nonlinear Schrödinger equations, Comm. Math. Phys., 153 (1993), 229-244.
doi: 10.1007/BF02096642. |
[23] |
M. Willem and Z.-Q. Wang,
A multiplicity result for the generalized Kadomtsev-Petviashvili equation, Journal of the Juliusz Schauder Center, 7 (1996), 261-270.
|
[24] |
M. Willem,
Minimax Theorems, volume 24. Birkhäuser Boston, Inc. , Boston, MA, 1996.
doi: 10.1007/978-1-4612-4146-1. |
[25] |
W. Zou,
Solitary waves of the generalized Kadomtsev-Petviashvili equations, Appl. Math. Lett., 15 (2002), 35-39.
doi: 10.1016/S0893-9659(01)00089-1. |
[1] |
Philippe Gravejat. Asymptotics of the solitary waves for the generalized Kadomtsev-Petviashvili equations. Discrete and Continuous Dynamical Systems, 2008, 21 (3) : 835-882. doi: 10.3934/dcds.2008.21.835 |
[2] |
Pedro Isaza, Juan López, Jorge Mejía. Cauchy problem for the fifth order Kadomtsev-Petviashvili (KPII) equation. Communications on Pure and Applied Analysis, 2006, 5 (4) : 887-905. doi: 10.3934/cpaa.2006.5.887 |
[3] |
Hideo Takaoka. Global well-posedness for the Kadomtsev-Petviashvili II equation. Discrete and Continuous Dynamical Systems, 2000, 6 (2) : 483-499. doi: 10.3934/dcds.2000.6.483 |
[4] |
Pedro Isaza, Jorge Mejía. On the support of solutions to the Kadomtsev-Petviashvili (KP-II) equation. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1239-1255. doi: 10.3934/cpaa.2011.10.1239 |
[5] |
Nobu Kishimoto, Minjie Shan, Yoshio Tsutsumi. Global well-posedness and existence of the global attractor for the Kadomtsev-Petviashvili Ⅱ equation in the anisotropic Sobolev space. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1283-1307. doi: 10.3934/dcds.2020078 |
[6] |
Wei Yan, Yimin Zhang, Yongsheng Li, Jinqiao Duan. Sharp well-posedness of the Cauchy problem for the rotation-modified Kadomtsev-Petviashvili equation in anisotropic Sobolev spaces. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 5825-5849. doi: 10.3934/dcds.2021097 |
[7] |
Jiaxiang Cai, Juan Chen, Min Chen. Efficient linearized local energy-preserving method for the Kadomtsev-Petviashvili equation. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2441-2453. doi: 10.3934/dcdsb.2021139 |
[8] |
Anahita Eslami Rad, Enrique G. Reyes. The Kadomtsev-Petviashvili hierarchy and the Mulase factorization of formal Lie groups. Journal of Geometric Mechanics, 2013, 5 (3) : 345-364. doi: 10.3934/jgm.2013.5.345 |
[9] |
Claude Bardos, Nicolas Besse. The Cauchy problem for the Vlasov-Dirac-Benney equation and related issues in fluid mechanics and semi-classical limits. Kinetic and Related Models, 2013, 6 (4) : 893-917. doi: 10.3934/krm.2013.6.893 |
[10] |
Lihui Chai, Shi Jin, Qin Li. Semi-classical models for the Schrödinger equation with periodic potentials and band crossings. Kinetic and Related Models, 2013, 6 (3) : 505-532. doi: 10.3934/krm.2013.6.505 |
[11] |
Christian Klein, Ralf Peter. Numerical study of blow-up in solutions to generalized Kadomtsev-Petviashvili equations. Discrete and Continuous Dynamical Systems - B, 2014, 19 (6) : 1689-1717. doi: 10.3934/dcdsb.2014.19.1689 |
[12] |
Roger P. de Moura, Ailton C. Nascimento, Gleison N. Santos. On the stabilization for the high-order Kadomtsev-Petviashvili and the Zakharov-Kuznetsov equations with localized damping. Evolution Equations and Control Theory, 2022, 11 (3) : 711-727. doi: 10.3934/eect.2021022 |
[13] |
Anwar Ja'afar Mohamad Jawad, Mohammad Mirzazadeh, Anjan Biswas. Dynamics of shallow water waves with Gardner-Kadomtsev-Petviashvili equation. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1155-1164. doi: 10.3934/dcdss.2015.8.1155 |
[14] |
Yanheng Ding, Xiaojing Dong, Qi Guo. On multiplicity of semi-classical solutions to nonlinear Dirac equations of space-dimension $ n $. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4105-4123. doi: 10.3934/dcds.2021030 |
[15] |
Xiaoming An, Xian Yang. Semi-classical states for fractional Schrödinger equations with magnetic fields and fast decaying potentials. Communications on Pure and Applied Analysis, 2022, 21 (5) : 1649-1672. doi: 10.3934/cpaa.2022038 |
[16] |
Yongqin Liu. The point-wise estimates of solutions for semi-linear dissipative wave equation. Communications on Pure and Applied Analysis, 2013, 12 (1) : 237-252. doi: 10.3934/cpaa.2013.12.237 |
[17] |
Jerry L. Bona, Didier Pilod. Stability of solitary-wave solutions to the Hirota-Satsuma equation. Discrete and Continuous Dynamical Systems, 2010, 27 (4) : 1391-1413. doi: 10.3934/dcds.2010.27.1391 |
[18] |
Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete and Continuous Dynamical Systems, 2021, 41 (8) : 3579-3614. doi: 10.3934/dcds.2021008 |
[19] |
Maurizio Grasselli, Vittorino Pata. On the damped semilinear wave equation with critical exponent. Conference Publications, 2003, 2003 (Special) : 351-358. doi: 10.3934/proc.2003.2003.351 |
[20] |
Mohameden Ahmedou, Mohamed Ben Ayed, Marcello Lucia. On a resonant mean field type equation: A "critical point at Infinity" approach. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 1789-1818. doi: 10.3934/dcds.2017075 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]