The present paper is concerned with semi-classical solitary wave solutions of a generalized Kadomtsev-Petviashvili equation in $\mathbb{R}^{2}$. Parameter $\varepsilon$ and potential $V(x,y)$ are included in the problem. The existence of the least energy solution is established for all $\varepsilon>0$ small. Moreover, we point out that these solutions converge to a least energy solution of the associated limit problem and concentrate to the minimum point of the potential as $\varepsilon \to 0$.
Citation: |
M. J. Ablowitz and P. A. Clarkson,
Solitons, Nonlinear Evolution Equations and Inverse Scattering, volume 149 of London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, 1991.
doi: 10.1017/CBO9780511623998.![]() ![]() ![]() |
|
M. J. Ablowitz and H. Segur,
Solitons and the Inverse Scattering Transform, volume 4 of SIAM Studies in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pa. , 1981.
![]() ![]() |
|
D. Boris
, T. Grava
and C. Klein
, On critical behaviour in generalized Kadomtsev-Petviashvili equations, Physica D: Nonlinear Phenomena, 333 (2016)
, 157-170.
doi: 10.1016/j.physd.2016.01.011.![]() ![]() ![]() |
|
A. De Bouard
and J.-C. Saut
, Solitary waves of generalized Kadomtsev-Petviashvili equations, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 14 (1997)
, 211-236.
doi: 10.1016/S0294-1449(97)80145-X.![]() ![]() ![]() |
|
J. Bourgain
, On the cauchy problem for the Kadomstev-Petviashvili equation, Geometric and Functional Analysis, 3 (1993)
, 315-341.
doi: 10.1007/BF01896259.![]() ![]() ![]() |
|
M. del Pino
and P. L. Felmer
, Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differential Equations, 4 (1996)
, 121-137.
doi: 10.1007/BF01189950.![]() ![]() ![]() |
|
W. Ding
and W. Ni
, On the existence of positive entire solutions of a semilinear elliptic equation, Arch. Rational Mech. Anal., 91 (1986)
, 283-308.
doi: 10.1007/BF00282336.![]() ![]() ![]() |
|
Y. Ding
, Semi-classical ground states concentrating on the nonlinear potential for a Dirac equation, J. Differential Equations, 249 (2010)
, 1015-1034.
doi: 10.1016/j.jde.2010.03.022.![]() ![]() ![]() |
|
Y. Ding
and X. Liu
, Semi-classical limits of ground states of a nonlinear Dirac equation, J. Differential Equations, 252 (2012)
, 4962-4987.
doi: 10.1016/j.jde.2012.01.023.![]() ![]() ![]() |
|
Y. Ding
and B. Ruf
, Existence and concentration of semiclassical solutions for Dirac equations with critical nonlinearities, SIAM J. Math. Anal., 44 (2012)
, 3755-3785.
doi: 10.1137/110850670.![]() ![]() ![]() |
|
Y. Ding
and T. Xu
, Localized concentration of semi-classical states for nonlinear Dirac equations, Arch. Ration. Mech. Anal., 216 (2015)
, 415-447.
doi: 10.1007/s00205-014-0811-4.![]() ![]() ![]() |
|
B. B. Kadomtsev and V. I. Petviashvili, On the stability of solitary waves in weakly dispersing media,
Soviet Physics Doklady, 15 (1970), 539.
![]() |
|
C. Klein
and J.-C. Saut
, A numerical approach to blow-up issues for dispersive perturbations of Burgers' equation, Phys. D, 295/296 (2015)
, 46-65.
doi: 10.1016/j.physd.2014.12.004.![]() ![]() ![]() |
|
Y. Liu
, Blow up and instability of solitary-wave solutions to a generalized Kadomtsev-Petviashvili equation, Trans. Amer. Math. Soc., 353 (2001)
, 191-208.
doi: 10.1090/S0002-9947-00-02465-X.![]() ![]() ![]() |
|
Y. Liu
, Strong instability of solitary-wave solutions to a Kadomtsev-Petviashvili equation in three dimensions, J. Differential Equations, 180 (2002)
, 153-170.
doi: 10.1006/jdeq.2001.4054.![]() ![]() ![]() |
|
Y. Liu
and X.-P. Wang
, Nonlinear stability of solitary waves of a generalized Kadomtsev-Petviashvili equation, Comm. Math. Phys., 183 (1997)
, 253-266.
![]() |
|
L. Molinet
, J. C. Saut
and N. Tzvetkov
, Global well-posedness for the KP-Ⅰ equation, Math. Ann., 324 (2002)
, 255-275.
doi: 10.1007/s00208-002-0338-0.![]() ![]() ![]() |
|
L. Molinet
, J.-C. Saut
and N. Tzvetkov
, Well-posedness and ill-posedness results for the Kadomtsev-Petviashvili-Ⅰ equation, Duke Math. J., 115 (2002)
, 353-384.
doi: 10.1215/S0012-7094-02-11525-7.![]() ![]() ![]() |
|
L. Molinet
, J.C. Saut
and N. Tzvetkov
, Remarks on the mass constraint for KP-type equations, SIAM J. Math. Anal., 39 (2007)
, 627-641.
doi: 10.1137/060654256.![]() ![]() ![]() |
|
J.-C. Saut
, Remarks on the generalized Kadomtsev-Petviashvili equations, Indiana Univ. Math. J., 42 (1993)
, 1011-1026.
doi: 10.1512/iumj.1993.42.42047.![]() ![]() ![]() |
|
S. Ukai
, Local solutions of the Kadomtsev-Petviashvili equation, J. Fac. Sci. Univ. Tokyo, Sect. IA Math, 36 (1989)
, 193-209.
![]() ![]() |
|
X. Wang
, On concentration of positive bound states of nonlinear Schrödinger equations, Comm. Math. Phys., 153 (1993)
, 229-244.
doi: 10.1007/BF02096642.![]() ![]() ![]() |
|
M. Willem
and Z.-Q. Wang
, A multiplicity result for the generalized Kadomtsev-Petviashvili equation, Journal of the Juliusz Schauder Center, 7 (1996)
, 261-270.
![]() |
|
M. Willem,
Minimax Theorems, volume 24. Birkhäuser Boston, Inc. , Boston, MA, 1996.
doi: 10.1007/978-1-4612-4146-1.![]() ![]() ![]() |
|
W. Zou
, Solitary waves of the generalized Kadomtsev-Petviashvili equations, Appl. Math. Lett., 15 (2002)
, 35-39.
doi: 10.1016/S0893-9659(01)00089-1.![]() ![]() ![]() |