\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Lyapunov-type inequalities and solvability of second-order ODEs across multi-resonance

This work was completed with the support by National Basic Research Program of China Grant 2013CB834100, NSFC Grant 11571065, NSFC Grant 11171132 and NSFC Grant 11201173
Abstract Full Text(HTML) Figure(6) Related Papers Cited by
  • We present some new Lyapunov-type inequalities for boundary value problems of the form $y''+u(x)y=0$, $y(0)=0=y(1)$, where $-A≤ u(x)≤ B$ and there are many resonance points lying inside the interval $[-A, B]$. The classical Lyapunov's inequality and its reverse are improved by using Pontryagin's maximum principle. As applications, we establish two readily verifiable unique solvability criteria for general $u(x)$. Some relevant examples are given to illustrate our results. Variants of Lyapunov-type inequalities for nonlinear BVPs are discussed at the end of the paper.

    Mathematics Subject Classification: Primary: 34C10, 34B15.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Comparison of the classical Lyapunov inequality, main results in [28] and our revised inequalities

    Figure 2.  The corresponding nontrivial solution $y(x)$

    Figure 3.  The nontrivial solution $y(x)$

    Figure 4.  The nontrivial solution $y(x)$

    Figure 5.  The nontrivial solution $y(x)$

    Figure 6.  The nontrivial solution $y(x)$

  •   S. R. Bernfeld and  V. LakshmikanthamAn Introduction to Nonlinear Boundary Value Problems, Elsevier, 1974. 
      G. Borg , On a liapounoff criterion of stability, American Journal of Mathematics, 71 (1949) , 67-70.  doi: 10.2307/2372093.
      A. Cañada , J. A. Montero  and  S. Villegas , Lyapunov-type inequalities and neumann boundary value problems at resonance, Math. Inequal. Appl., 8 (2005) , 459-475.  doi: 10.7153/mia-08-42.
      A. Cañada , J. A. Montero  and  S. Villegas , Lyapunov inequalities for partial differential equations, Journal of Functional Analysis, 237 (2006) , 176-193.  doi: 10.1016/j.jfa.2005.12.011.
      A. Cañada , J. A. Montero  and  S. Villegas , Lyapunov-type inequalities for differential equations, Mediterranean Journal of Mathematics, 3 (2006) , 177-187.  doi: 10.1007/s00009-006-0071-0.
      A. Cañada  and  S. Villegas , Optimal lyapunov inequalities for disfocality and neumann boundary conditions using lp norms, Discrete Contin. Dyn. Syst. Ser. A, 20 (2008) , 877-888.  doi: 10.3934/dcds.2008.20.877.
      A. Cañada  and  S. Villegas , Lyapunov inequalities for neumann boundary conditions at higher eigenvalues, J. Eur. Math. Soc. (JEMS), 12 (2010) , 163-178.  doi: 10.4171/JEMS/193.
      A. Cañada  and  S. Villegas , Lyapunov inequalities for partial differential equations at radial higher eigenvalues, Discrete Contin. Dyn. Syst., 33 (2013) , 111-122.  doi: 10.3934/dcds.2013.33.111.
      X. Chang  and  Q. Huang , Two-point boundary value problems for duffing equations across resonance, Journal of optimization theory and applications, 140 (2009) , 419-430.  doi: 10.1007/s10957-008-9461-8.
      S.-S. Cheng , Lyapunov inequalities for differential and difference equations, Fasc. Math, 23 (1991) , 25-41. 
      S. B. Eliason , A lyapunov inequality for a certain second order non-linear differential equation, Journal of the London Mathematical Society, 2 (1970) , 461-466.  doi: 10.1112/jlms/2.Part_3.461.
      B. Harris  and  Q. Kong , On the oscillation of differential equations with an oscillatory coefficient, Transactions of the American Mathematical Society, 347 (1995) , 1831-1839.  doi: 10.1090/S0002-9947-1995-1283552-4.
      P. HartmanOrdinary Differential Equations, Birkhauser, Boston, 1982. 
      J. Henderson , Best interval lengths for boundary value problems for third order lipschitz equations, SIAM journal on mathematical analysis, 18 (1987) , 293-305.  doi: 10.1137/0518023.
      J. Henderson , Optimal interval lengths for nonlocal boundary value problems for second order lipschitz equations, Communications in Applied Analysis, 15 (2011) , 475-482. 
      M. Grigor'evich Krein , On certain problems on the maximum and minimum of characteristic values and on the lyapunov zones of stability, Amer. Math. Soc. Transl., 1 (1955) , 163-187.  doi: 10.1090/trans2/001/08.
      M. Lees , Discrete methods for nonlinear two-point boundary value problems, Numerical Solution of Partial Differential Equations, 1 (1966) , 59-72. 
      Y. Li  and  H. Wang , Neumann problems for second order ordinary differential equations across resonance, Zeitschrift für angewandte Mathematik und Physik ZAMP, 46 (1995) , 393-406.  doi: 10.1007/BF01003558.
      A. Liapounoff, Problème général de la stabilité du mouvement, In Annales de la faculté des sciences de Toulouse, 9 (1907), 203-474. Université Paul Sabatier.
      G. López  and  J.-A. Montero-Sánchez , Neumann boundary value problems across resonance, ESAIM: Control, Optimisation and Calculus of Variations, 12 (2006) , 398-408.  doi: 10.1051/cocv:2006009.
      J. Mawhin  and  J. Ward , Nonresonance and existence for nonlinear elliptic boundary value problems, Nonlinear Analysis: Theory, Methods & Applications, 5 (1981) , 677-684.  doi: 10.1016/0362-546X(81)90084-5.
      J. P. Pinasco, Lower bounds for eigenvalues of the one-dimensional p-laplacian, In Abstract and Applied Analysis, Hindawi Publishing Corporation, 2004,147-153. doi: 10.1155/S108533750431002X.
      J. Qi and S. Chen, Extremal norms of the potentials recovered from inverse dirichlet problems, Inverse Problems, 32 (2016), 035007, 13pp. doi: 10.1088/0266-5611/32/3/035007.
      K. Shen  and  M. Zhang , An optimal class of non-degenerate potentials for second-order ordinary differential equations, Boundary Value Problems, 2015 (2015) , 1-17.  doi: 10.1186/s13661-015-0451-0.
      X. Tang  and  M. Zhang , Lyapunov inequalities and stability for linear hamiltonian systems, Journal of Differential Equations, 252 (2012) , 358-381.  doi: 10.1016/j.jde.2011.08.002.
      H. Wang  and  Y. Li , Two point boundary value problems for second-order ordinary differential equations across many resonant points, Journal of mathematical analysis and applications, 179 (1993) , 61-75.  doi: 10.1006/jmaa.1993.1335.
      H. Wang  and  Y. Li , Neumann boundary value problems for second-order ordinary differential equations across resonance, SIAM journal on control and optimization, 33 (1995) , 1312-1325.  doi: 10.1137/S036301299324532X.
      H. Wang  and  Y. Li , Existence and uniqueness of solutions to two point boundary value problems for ordinary differential equations, Zeitschrift für angewandte Mathematik und Physik ZAMP, 47 (1996) , 373-384.  doi: 10.1007/BF00916644.
      M. Zhang , Extremal values of smallest eigenvalues of hill's operators with potentials in $L^1$ balls, Journal of Differential Equations, 246 (2009) , 4188-4220.  doi: 10.1016/j.jde.2009.03.016.
  • 加载中

Figures(6)

SHARE

Article Metrics

HTML views(418) PDF downloads(218) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return