\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Shape optimization for Stokes problem with threshold slip boundary conditions

  • * Corresponding author

    * Corresponding author 

The first author acknowledges the support of the project 17-01747S of the Czech Science Foundation. The second author was suppported by the Academy of Finland, grant #260076. The third author was supported by the Ministry of Education, Youth and Sports under the projects LM2015084 and LO1201 in the framework of the targeted support of the Large Infrastructures and of National Programme for Sustainability Ⅰ

Abstract Full Text(HTML) Figure(10) Related Papers Cited by
  • This paper deals with shape optimization of systems governed by the Stokes flow with threshold slip boundary conditions. The stability of solutions to the state problem with respect to a class of domains is studied. For computational purposes the slip term and impermeability condition are handled by a regularization. To get a finite dimensional optimization problem, the optimized part of the boundary is described by Bézier polynomials. Numerical examples illustrate the computational efficiency.

    Mathematics Subject Classification: Primary: 49J20, 35J86, 65K15; Secondary: 65N30, 90C30.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Shape of admissible domains

    Figure 2.  Left: reference triangulation $\widehat{\cal T_h}$. Right: Mapped triangulation $\cal T_h$.

    Figure 3.  Optimized shapes (left) and convergence histories (right) for different values of the penalty/smoothing parameter $\varepsilon$.

    Figure 4.  Streamlines (left) and pressure contours (right) for $\varepsilon=10^{-5}$.

    Figure 5.  Tangential velocity and shear stress for $\varepsilon=10^{-5}$

    Figure 6.  Streamlines (left) and pressure contours (right)

    Figure 7.  Tangential velocity and shear stress

    Figure 8.  Optimized Bézier functions $\alpha_m$ for two different values of $\sigma_1$

    Figure 9.  Contours of the target pressure $p_0$ (left) and computed pressure (right)

    Figure 10.  Tangential velocity and shear stress on $S(\alpha_{opt})$

  •   D. Arnold , F. Brezzi  and  M. Fortin , A stable finite element for the Stokes equations, Calcolo, 21 (1984) , 337-344.  doi: 10.1007/BF02576171.
      D. Bucur , E. Feireisl  and  Š. Nečasová , Influence of wall roughness on the slip behavior of viscous fluids, Proc. R. Soc. Edinb., Sect. A, Math., 138 (2008) , 957-973.  doi: 10.1017/S0308210507000376.
      M. Bulíček and J. Málek On unsteady internal flows of Bingham fluids subject to threshold slip on the impermeable boundary, in Recent Developments of Mathematical Fluid Mechanics (eds. H. Amann et al. ), Birkhäuser, 2016,135-156.
      D. Chenais , On the existence of a solution in a domain identification problem, J. Math. Anal. Appl, 52 (1975) , 189-219.  doi: 10.1016/0022-247X(75)90091-8.
      G. Farin, Curves and Surfaces for CAGD (Fifth Edition), Morgan Kaufmann, 2002.
      H. Fujita , A mathematical analysis of motions of viscous incompressible fluid under leak and or slip boundary conditions, Res. Inst. Math. Sci. Kokyuroku, 888 (1994) , 199-216. 
      G. P. Galdi, Introduction to the Mathematical Theory of the Navier-Stokes Equations. Volume Ⅰ: Linearised Steady Problems, vol. 38 of Springer Tracts in Natural Philosophy, Springer, New York, 1994. doi: 10.1007/978-1-4612-5364-8.
      V. Girault and P. A. Raviart, Finite Element Approximation of the Navier–Stokes Equations, vol. 749 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, Heidelberg, New York, 1979.
      R. Glowinski, Numerical Methods for Nonlinear Variational Problems, Springer Series in Computational Physics, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1984. doi: 10.1007/978-3-662-12613-4.
      A. Griewank and A. Walther, Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, 2nd edition, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2008. doi: 10.1137/1.9780898717761.
      J. Haslinger , A note on contact shape optimization with semicoercive state problems, Appl. Math., 47 (2002) , 397-410.  doi: 10.1023/A:1021709907750.
      J. Haslinger and R. A. E. Mäkinen, Introduction to Shape Optimization: Theory, Approximation, and Computation, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2003. doi: 10.1137/1.9780898718690.
      J. Haslinger  and  J. Stebel , Stokes problem with a solution dependent slip bound: Stability of solutions with respect to domains, ZAMM Z. Angew. Math. Mech., 96 (2016) , 1049-1060.  doi: 10.1002/zamm.201500117.
      J. Haslinger , J. Stebel  and  T. Sassi , Shape optimization for Stokes problem with threshold slip, Applications of Mathematics, 59 (2014) , 631-652.  doi: 10.1007/s10492-014-0077-z.
      H. Hervet  and  L. Léger , Flow with slip at the wall: From simple to complex fluids, C. R. Physique, 4 (2003) , 241-249.  doi: 10.1016/S1631-0705(03)00047-1.
      L. Holzleitner , Hausdorff convergence of domains and their boundaries in shape optimal design, Control Cybernet., 30 (2001) , 23-44. 
      C. Le Roux , Steady Stokes flows with threshold slip boundary conditions, Math. Models Methods Appl. Sci., 15 (2005) , 1141-1168.  doi: 10.1142/S0218202505000686.
      C. Le Roux  and  A. Tani , Steady solutions of the Navier-Stokes equations with threshold slip boundary conditions, Math. Methods Appl. Sci., 30 (2007) , 595-624.  doi: 10.1002/mma.802.
      MATLAB, Release R2014a with Optimization Toolbox 7.0, The MathWorks Inc. , Natick, Massachusetts, 2014.
      J. Outrata, M. Kočvara and J. Zowe, Nonsmooth Approach to Optimization Problems with Equilibrium Constraints, vol. 28 of Nonconvex Optimization and its Applications, Kluwer Academic Publishers, Dordrecht, Boston, London, 1998. doi: 10.1007/978-1-4757-2825-5.
      O. Pironneau, Optimal Shape Design for Elliptic Systems, Springer Series in Computations Physics, Springer Verlag, New York, 1984. doi: 10.1007/978-3-642-87722-3.
      I. J. Rao  and  K. R. Rajagopal , The effect of the slip boundary condition on the flow of fluids in a channel, Acta Mechanica, 135 (1999) , 113-126.  doi: 10.1007/BF01305747.
      J. P. Rothstein , Slip on superhydrophobic surfaces, Annual Review of Fluid Mechanics, 42 (2010) , 89-109.  doi: 10.1146/annurev-fluid-121108-145558.
      N. Saito , On the Stokes equation with the leak and slip boundary conditions of friction type: regularity of solutions, Publ. Res. Inst. Math. Sci., 40 (2004) , 345-383.  doi: 10.2977/prims/1145475807.
      J. Stebel , On shape stability of incompressible fluids subject to Navier's slip condition, Journal of Mathematical Fluid mechanics, 14 (2012) , 575-589.  doi: 10.1007/s00021-011-0086-6.
  • 加载中

Figures(10)

SHARE

Article Metrics

HTML views(215) PDF downloads(279) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return