December  2017, 10(6): 1375-1391. doi: 10.3934/dcdss.2017073

Optimal control of some quasilinear Maxwell equations of parabolic type

1. 

LAMAV and FR CNRS 2956, Université de Valenciennes et du Hainaut Cambrésis, Institut des Sciences et Techniques of Valenciennes, F-59313 -Valenciennes Cedex 9, France

2. 

Technische Universität Berlin, Institut für Mathematik, Str. des 17. Juni 136, Sekr. MA 4-5, D-10623 Berlin, Germany

Dedicated to the 60th birthday of Tomáš Roubíček on

Received  May 2016 Revised  July 2016 Published  June 2017

Fund Project: The second author was supported by Einstein Center for Mathematics Berlin (ECMath), project D-SE 9.

An optimal control problem is studied for a quasilinear Maxwell equation of nondegenerate parabolic type. Well-posedness of the quasilinear state equation, existence of an optimal control, and weak Gâteaux-differentiability of the control-to-state mapping are proved. Based on these results, first-order necessary optimality conditions and an associated adjoint calculus are derived.

Citation: Serge Nicaise, Fredi Tröltzsch. Optimal control of some quasilinear Maxwell equations of parabolic type. Discrete and Continuous Dynamical Systems - S, 2017, 10 (6) : 1375-1391. doi: 10.3934/dcdss.2017073
References:
[1]

C. AmroucheC. BernardiM. Dauge and V. Girault, Vector potentials in three-dimensional non-smooth domains, Math. Methods Appl. Sci., 21 (1998), 823-864.  doi: 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO;2-B.

[2]

F. BachingerU. Langer and J. Schöberl, Numerical analysis of nonlinear multiharmonic eddy current problems, Numer. Math., 100 (2005), 593-616.  doi: 10.1007/s00211-005-0597-2.

[3]

G. Bärwolff and M. Hinze, Optimization of semiconductor melts, ZAMM Z. Angew. Math. Mech., 86 (2006), 423-437.  doi: 10.1002/zamm.200410247.

[4]

V. Bommer and I. Yousept, Optimal control of the full time-dependent Maxwell equations, ESAIM Math. Model. Numer. Anal., 50 (2016), 237-261.  doi: 10.1051/m2an/2015041.

[5]

P.E. DruetO. KleinJ. SprekelsF. Tröltzsch and I. Yousept, Optimal control of three-dimensional state-constrained induction heating problems with nonlocal radiation effects, SIAM J. Control Optim., 49 (2011), 1707-1736.  doi: 10.1137/090760544.

[6]

R. Griesse and K. Kunisch, Optimal control for a stationary MHD system in velocity-current formulation, SIAM J. Control Optim., 45 (2006), 1822-1845.  doi: 10.1137/050624236.

[7]

M. Gunzburger and C. Trenchea, Analysis and discretization of an optimal control problem for the time-periodic MHD equations, J. Math. Anal. Appl., 308 (2005), 440-466.  doi: 10.1016/j.jmaa.2004.11.022.

[8]

M. Hinze, Control of weakly conductive fluids by near wall Lorentz forces, GAMM-Mitt., 30 (2007), 149-158.  doi: 10.1002/gamm.200790004.

[9]

D. Hömberg and J. Sokolowski, Optimal shape design of inductor coils for surface hardening, Numer. Funct. Anal. Optim., 42 (2003), 1087-1117.  doi: 10.1137/S0363012900375822.

[10]

M. Kolmbauer and U. Langer, A robust preconditioned MinRes solver for distributed time-periodic eddy current optimal control problems, SIAM J. Sci. Comput., 34 (2012), B785-B809.  doi: 10.1137/110842533.

[11]

S. NicaiseS. Stingelin and F. Tröltzsch, On two optimal control problems for magnetic fields, Computational Methods in Applied Mathematics, 14 (2014), 555-573.  doi: 10.1515/cmam-2014-0022.

[12]

S. NicaiseS. Stingelin and F. Tröltzsch, Optimal control of magnetic fields in flow measurement, Discrete and Continuous Dynamical Systems-S, 8 (2015), 579-605. 

[13]

S. Nicaise and F. Tröltzsch, A coupled Maxwell integrodifferential model for magnetization processes, Mathematische Nachrichten, 287 (2014), 432-452.  doi: 10.1002/mana.201200206.

[14]

T. Roubíček, Nonlinear Partial Differential Equations with Applications, volume 153 of International Series of Numerical Mathematics, Birkhäuser/Springer Basel AG, Basel, second edition, 2013. doi: 10.1007/978-3-0348-0513-1.

[15]

R. E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, volume 49 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 1997.

[16]

F. Tröltzsch, Optimal Control of Partial Differential Equations. Theory, Methods and Applications, volume 112. American Math. Society, Providence, 2010.

[17]

I. Yousept, Optimal control of Maxwell's equations with regularized state constraints, Comput. Optim. Appl., 52 (2012), 559-581.  doi: 10.1007/s10589-011-9422-2.

[18]

I. Yousept and F. Tröltzsch, PDE-constrained optimization of time-dependent 3d electromagnetic induction heating by alternating voltages, ESAIM M2AN, 46 (2012), 709-729.  doi: 10.1051/m2an/2011052.

[19]

I. Yousept, Optimal control of quasilinear H(curl)-elliptic partial differential equations in magnetostatic field problems, SIAM J. Control Optim., 51 (2013), 3624-3651.  doi: 10.1137/120904299.

show all references

Dedicated to the 60th birthday of Tomáš Roubíček on

References:
[1]

C. AmroucheC. BernardiM. Dauge and V. Girault, Vector potentials in three-dimensional non-smooth domains, Math. Methods Appl. Sci., 21 (1998), 823-864.  doi: 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO;2-B.

[2]

F. BachingerU. Langer and J. Schöberl, Numerical analysis of nonlinear multiharmonic eddy current problems, Numer. Math., 100 (2005), 593-616.  doi: 10.1007/s00211-005-0597-2.

[3]

G. Bärwolff and M. Hinze, Optimization of semiconductor melts, ZAMM Z. Angew. Math. Mech., 86 (2006), 423-437.  doi: 10.1002/zamm.200410247.

[4]

V. Bommer and I. Yousept, Optimal control of the full time-dependent Maxwell equations, ESAIM Math. Model. Numer. Anal., 50 (2016), 237-261.  doi: 10.1051/m2an/2015041.

[5]

P.E. DruetO. KleinJ. SprekelsF. Tröltzsch and I. Yousept, Optimal control of three-dimensional state-constrained induction heating problems with nonlocal radiation effects, SIAM J. Control Optim., 49 (2011), 1707-1736.  doi: 10.1137/090760544.

[6]

R. Griesse and K. Kunisch, Optimal control for a stationary MHD system in velocity-current formulation, SIAM J. Control Optim., 45 (2006), 1822-1845.  doi: 10.1137/050624236.

[7]

M. Gunzburger and C. Trenchea, Analysis and discretization of an optimal control problem for the time-periodic MHD equations, J. Math. Anal. Appl., 308 (2005), 440-466.  doi: 10.1016/j.jmaa.2004.11.022.

[8]

M. Hinze, Control of weakly conductive fluids by near wall Lorentz forces, GAMM-Mitt., 30 (2007), 149-158.  doi: 10.1002/gamm.200790004.

[9]

D. Hömberg and J. Sokolowski, Optimal shape design of inductor coils for surface hardening, Numer. Funct. Anal. Optim., 42 (2003), 1087-1117.  doi: 10.1137/S0363012900375822.

[10]

M. Kolmbauer and U. Langer, A robust preconditioned MinRes solver for distributed time-periodic eddy current optimal control problems, SIAM J. Sci. Comput., 34 (2012), B785-B809.  doi: 10.1137/110842533.

[11]

S. NicaiseS. Stingelin and F. Tröltzsch, On two optimal control problems for magnetic fields, Computational Methods in Applied Mathematics, 14 (2014), 555-573.  doi: 10.1515/cmam-2014-0022.

[12]

S. NicaiseS. Stingelin and F. Tröltzsch, Optimal control of magnetic fields in flow measurement, Discrete and Continuous Dynamical Systems-S, 8 (2015), 579-605. 

[13]

S. Nicaise and F. Tröltzsch, A coupled Maxwell integrodifferential model for magnetization processes, Mathematische Nachrichten, 287 (2014), 432-452.  doi: 10.1002/mana.201200206.

[14]

T. Roubíček, Nonlinear Partial Differential Equations with Applications, volume 153 of International Series of Numerical Mathematics, Birkhäuser/Springer Basel AG, Basel, second edition, 2013. doi: 10.1007/978-3-0348-0513-1.

[15]

R. E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, volume 49 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 1997.

[16]

F. Tröltzsch, Optimal Control of Partial Differential Equations. Theory, Methods and Applications, volume 112. American Math. Society, Providence, 2010.

[17]

I. Yousept, Optimal control of Maxwell's equations with regularized state constraints, Comput. Optim. Appl., 52 (2012), 559-581.  doi: 10.1007/s10589-011-9422-2.

[18]

I. Yousept and F. Tröltzsch, PDE-constrained optimization of time-dependent 3d electromagnetic induction heating by alternating voltages, ESAIM M2AN, 46 (2012), 709-729.  doi: 10.1051/m2an/2011052.

[19]

I. Yousept, Optimal control of quasilinear H(curl)-elliptic partial differential equations in magnetostatic field problems, SIAM J. Control Optim., 51 (2013), 3624-3651.  doi: 10.1137/120904299.

[1]

Lucas Bonifacius, Ira Neitzel. Second order optimality conditions for optimal control of quasilinear parabolic equations. Mathematical Control and Related Fields, 2018, 8 (1) : 1-34. doi: 10.3934/mcrf.2018001

[2]

Sofia O. Lopes, Fernando A. C. C. Fontes, Maria do Rosário de Pinho. On constraint qualifications for nondegenerate necessary conditions of optimality applied to optimal control problems. Discrete and Continuous Dynamical Systems, 2011, 29 (2) : 559-575. doi: 10.3934/dcds.2011.29.559

[3]

Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control and Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017

[4]

Jianxiong Ye, An Li. Necessary optimality conditions for nonautonomous optimal control problems and its applications to bilevel optimal control. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1399-1419. doi: 10.3934/jimo.2018101

[5]

Shahlar F. Maharramov. Necessary optimality conditions for switching control problems. Journal of Industrial and Management Optimization, 2010, 6 (1) : 47-55. doi: 10.3934/jimo.2010.6.47

[6]

William G. Litvinov. Optimal control of electrorheological clutch described by nonlinear parabolic equation with nonlocal boundary conditions. Journal of Industrial and Management Optimization, 2011, 7 (2) : 291-315. doi: 10.3934/jimo.2011.7.291

[7]

Kei Matsuura, Mitsuharu Otani. Exponential attractors for a quasilinear parabolic equation. Conference Publications, 2007, 2007 (Special) : 713-720. doi: 10.3934/proc.2007.2007.713

[8]

Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control and Related Fields, 2021, 11 (3) : 521-554. doi: 10.3934/mcrf.2020052

[9]

Fengshuang Gao, Yuxia Guo. Multiple solutions for a critical quasilinear equation with Hardy potential. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 1977-2003. doi: 10.3934/dcdss.2019128

[10]

Ulisse Stefanelli, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of a rate-independent evolution equation via viscous regularization. Discrete and Continuous Dynamical Systems - S, 2017, 10 (6) : 1467-1485. doi: 10.3934/dcdss.2017076

[11]

Alexander Arguchintsev, Vasilisa Poplevko. An optimal control problem by parabolic equation with boundary smooth control and an integral constraint. Numerical Algebra, Control and Optimization, 2018, 8 (2) : 193-202. doi: 10.3934/naco.2018011

[12]

Eduardo Casas, Konstantinos Chrysafinos. Analysis and optimal control of some quasilinear parabolic equations. Mathematical Control and Related Fields, 2018, 8 (3&4) : 607-623. doi: 10.3934/mcrf.2018025

[13]

Francis Clarke. A general theorem on necessary conditions in optimal control. Discrete and Continuous Dynamical Systems, 2011, 29 (2) : 485-503. doi: 10.3934/dcds.2011.29.485

[14]

Laurence Cherfils, Stefania Gatti, Alain Miranville. A doubly nonlinear parabolic equation with a singular potential. Discrete and Continuous Dynamical Systems - S, 2011, 4 (1) : 51-66. doi: 10.3934/dcdss.2011.4.51

[15]

Mehdi Badra, Kaushik Bal, Jacques Giacomoni. Existence results to a quasilinear and singular parabolic equation. Conference Publications, 2011, 2011 (Special) : 117-125. doi: 10.3934/proc.2011.2011.117

[16]

Mourad Bellassoued, Ibtissem Ben Aïcha, Zouhour Rezig. Stable determination of a vector field in a non-Self-Adjoint dynamical Schrödinger equation on Riemannian manifolds. Mathematical Control and Related Fields, 2021, 11 (2) : 403-431. doi: 10.3934/mcrf.2020042

[17]

Andrei V. Dmitruk, Nikolai P. Osmolovskii. Necessary conditions for a weak minimum in optimal control problems with integral equations on a variable time interval. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4323-4343. doi: 10.3934/dcds.2015.35.4323

[18]

Hongwei Lou, Jiongmin Yong. Second-order necessary conditions for optimal control of semilinear elliptic equations with leading term containing controls. Mathematical Control and Related Fields, 2018, 8 (1) : 57-88. doi: 10.3934/mcrf.2018003

[19]

Andrei V. Dmitruk, Nikolai P. Osmolovski. Necessary conditions for a weak minimum in a general optimal control problem with integral equations on a variable time interval. Mathematical Control and Related Fields, 2017, 7 (4) : 507-535. doi: 10.3934/mcrf.2017019

[20]

Vincenzo Basco, Piermarco Cannarsa, Hélène Frankowska. Necessary conditions for infinite horizon optimal control problems with state constraints. Mathematical Control and Related Fields, 2018, 8 (3&4) : 535-555. doi: 10.3934/mcrf.2018022

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (341)
  • HTML views (136)
  • Cited by (2)

Other articles
by authors

[Back to Top]