[1]
|
U. L. Abbas, R. M. Anderson and J. W. Mellors, Potential impact of antiretroviral chemoprophylaxis on HIV-1 transmission in resource-limited settings, PLoS ONE, 2 (2007), e875, 1-11.
doi: 10.1371/journal.pone.0000875.
|
[2]
|
F. B. Agusto, S. Lenhart, A. B. Gumel and A. Odoi, Mathematical analysis of a model for the transmission dynamics of bovine tuberculosis, Math. Meth. Appl. Sci., 34 (2011), 1873-1887.
doi: 10.1002/mma.1486.
|
[3]
|
S. S. Alistar, P. M. Grant and E. Bendavid, Comparative effectiveness and cost-effectiveness of antiretroviral therapy and pre-exposure prophylaxis for HIV prevention in South Africa BMC Med. 12 (2014), p46.
doi: 10.1186/1741-7015-12-46.
|
[4]
|
E. J. Arts and D. J. Hazuda, HIV-1 antiretroviral drug therapy, Cold Spring Harb. Perspect. Med., 2 (2012), 1-23.
doi: 10.1101/cshperspect.a007161.
|
[5]
|
M. H. A. Biswas, L. T. Paiva and M. R. de Pinho, A SEIR model for control of infectious diseases with constraints, Math. Biosci. Eng., 11 (2014), 761-784.
doi: 10.3934/mbe.2014.11.761.
|
[6]
|
C. Celum, T. B. Hallett and J. M. Baeten, HIV-1 prevention with ART and PrEP: Mathematical modeling insights into Resistance, effectiveness, and public health impact, J. Infect. Dis., 208 (2013), 189-191.
doi: 10.1093/infdis/jit154.
|
[7]
|
F. Clarke,
Functional Analysis, Calculus of Variations and Optimal Control Graduate Texts in Mathematics, 264, Springer, London, 2013.
doi: 10.1007/978-1-4471-4820-3.
|
[8]
|
F. Clarke and M. R. de Pinho, Optimal control problems with mixed constraints, SIAM J. Control Optim., 48 (2010), 4500-4524.
doi: 10.1137/090757642.
|
[9]
|
M. S. Cohen, Y. Q. Chen and M. McCauley, et al., Prevention of HIV-1 infection with early antiretroviral therapy, New England Journal of Medicine, 365 (2011), 493-505.
doi: 10.1056/NEJMoa1105243.
|
[10]
|
S. G. Deeks, S. R. Lewin and D. V. Havlir, The end of AIDS: HIV infection as a chronic disease, The Lancet, 382 (2013), 1525-1533.
doi: 10.1016/S0140-6736(13)61809-7.
|
[11]
|
J. Del Romero, M. B. Baza, I. Río, A. Jerónimo, M. Vera, V. Hernando, C. Rodríguez and J. Castilla, Natural conception in HIV-serodiscordant couples with the infected partner in suppressive antiretroviral therapy: A prospective cohort study Medicine (Baltimore) 95 (2016), e4398.
doi: 10.1097/MD.0000000000004398.
|
[12]
|
R. Denysiuk, C. J. Silva and D. F. M. Torres, Multiobjective approach to optimal control for a tuberculosis model, Optim. Methods Softw., 30 (2015), 893-910.
doi: 10.1080/10556788.2014.994704.
|
[13]
|
E. F. Drabo, J. W. Hay, R. Vardavas, Z. R. Wagner and N. Sood, A cost-effectiveness analysis of pre-exposure prophylaxis for the prevention of HIV among Los Angeles County: Men who have sex with men, Clin. Infect. Dis., 63 (2016), 1495-1504.
doi: 10.1093/cid/ciw578.
|
[14]
|
C. L. Gay and M. S. Cohen, Antiretrovirals to prevent HIV infection: Pre-and postexposure prophylaxis, Curr. Infect. Dis. Rep., 10 (2008), 323-331.
doi: 10.1007/s11908-008-0052-5.
|
[15]
|
H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599-653.
doi: 10.1137/S0036144500371907.
|
[16]
|
D. Hincapié-Palacio, J. Ospina and D. F. M. Torres, Approximated analytical solution to an Ebola optimal control problem, Int. J. Comput. Methods Eng. Sci. Mech., 17 (2016), 382-390.
doi: 10.1080/15502287.2016.1231236.
|
[17]
|
S. B. Kim, M. Yoon, N. S. Ku, M. H. Kim, J. E. Song and J. Y. Ahn, Mathematical modeling of HIV prevention measures including pre-exposure prophylaxis on HIV incidence in South Korea, PLoS ONE, 9 (2014), e90080, 1-9.
doi: 10.1371/journal.pone.0090080.
|
[18]
|
V. Lakshmikantham, S. Leela and A. A. Martynyuk,
Stability Analysis of Nonlinear Systems Marcel Dekker, Inc. , New York and Basel, 1989.
|
[19]
|
J. P. LaSalle,
The Stability of Dynamical Systems SIAM, Philadelphia, PA, 1976.
|
[20]
|
A. P. Lemos-Paião, C. J. Silva and D. F. M. Torres, An epidemic model for cholera with optimal control treatment, J. Comput. Appl. Math., 318 (2017), 168-180.
doi: 10.1016/j.cam.2016.11.002.
|
[21]
|
J. Liu and T. Zhang, Global stability for a tuberculosis model, Math. Comput. Modelling, 54 (2011), 836-845.
doi: 10.1016/j.mcm.2011.03.033.
|
[22]
|
M. R. Loutfy, W. Wu and M. Letchumanan, et al., Systematic review of HIV transmission between heterosexual serodiscordant couples where the HIV-positive partner is fully suppressed on antiretroviral therapy, PLoS ONE, 8 (2013), e55747, 1-12.
doi: 10.1371/journal.pone.0055747.
|
[23]
|
J. F. G. Monteiro, S. Galea, T. Flanigan, M. L. Monteiro, S. R. Friedman and B. D. L. Marshall, Evaluating HIV prevention strategies for populations in key affected groups: The example of Cabo Verde, Int. J. Public Health, 60 (2015), 457-466.
doi: 10.1007/s00038-015-0676-9.
|
[24]
|
A. Rachah and D. F. M. Torres, Dynamics and optimal control of Ebola transmission, Math. Comput. Sci., 10 (2016), 331-342.
doi: 10.1007/s11786-016-0268-y.
|
[25]
|
R. de Cabo Verde, Rapport de Progrès sur la Riposte au SIDA au Cabo Verde – 2015, Comité
de Coordenação do Combate a Sida, 2015.
|
[26]
|
D. Rocha, C. J. Silva and D. F. M. Torres, Stability and optimal control of a delayed HIV model Math. Methods Appl. Sci. in press, 2016.
doi: 10.1002/mma.4207.
|
[27]
|
H. S. Rodrigues, M. T. T. Monteiro and D. F. M. Torres, Vaccination models and optimal control strategies to dengue, Math. Biosci., 247 (2014), 1-12.
doi: 10.1016/j.mbs.2013.10.006.
|
[28]
|
H. S. Rodrigues, M. T. T. Monteiro and D. F. M. Torres, Seasonality effects on dengue: Basic reproduction number, sensitivity analysis and optimal control, Math. Methods Appl. Sci., 39 (2016), 4671-4679.
doi: 10.1002/mma.3319.
|
[29]
|
C. J. Silva, H. Maurer and D. F. M. Torres, Optimal control of a tuberculosis model with state and control delays, Math. Biosci. Eng., 14 (2017), 321-337.
doi: 10.3934/mbe.2017021.
|
[30]
|
C. J. Silva and D. F. M. Torres, A TB-HIV/AIDS coinfection model and optimal control treatment, Discrete Contin. Dyn. Syst., 35 (2015), 4639-4663.
doi: 10.3934/dcds.2015.35.4639.
|
[31]
|
C. J. Silva and D. F. M. Torres, A SICA compartmental model in epidemiology with application to HIV/AIDS in Cape Verde, Ecological Complexity, 30 (2017), 70-75.
doi: 10.1016/j.ecocom.2016.12.001.
|
[32]
|
C. D. Spinner, C. Boesecke, A. Zink, H. Jessen, H-J. Stellbrink, J. K. Rockstroh and S. Esser, HIV pre-exposure prophylaxis (PrEP): A review of current knowledge of oral systemic HIV PrEP in humans, Infection, 44 (2016), 151-158.
doi: 10.1007/s15010-015-0850-2.
|
[33]
|
UNAIDS,
Global AIDS Update 2016 Joint United Nations Programme on HIV/AIDS, Geneva, 2016. http://www.unaids.org/en/resources/documents/2016/Global-AIDS-update-2016
|
[34]
|
P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.
doi: 10.1016/S0025-5564(02)00108-6.
|
[35]
|
R. A. Weiss, How does HIV cause AIDS?, Science, 260 (1993), 1273-1279.
doi: 10.1126/science.8493571.
|
[36]
|
WHO,
Policy Brief on Oral Pre-Exposure Prophylaxis of HIV Infection (PrEP) Geneva, 2015. http://www.who.int/hiv/pub/prep/policy-brief-prep-2015/en/
|
[37]
|
D. P. Wilson, M. G. Law, A. E. Grulich, D. A. Cooper and J. M. Kaldor, Relation between HIV viral load and infectiousness: A model-based analysis, The Lancet, 372 (2008), 314-320.
doi: 10.1016/S0140-6736(08)61115-0.
|
[38]
|
World Bank Data, Cabo Verde, World Development Indicators,
http://data.worldbank.org/country/cape-verde
|
[39]
|
M. Zwahlen and M. Egger,
Progression and mortality of untreated HIV-positive individuals living in resource-limited settings: Update of literature review and evidence synthesis Report on UNAIDS obligation no. HQ/05/422204,2006.
|
[40]
|
https://www.hiv.gov/hiv-basics/hiv-prevention/using-hiv-medication-to-reduce-risk/pre-exposure-prophylaxis
|
[41]
|
http://www.who.int/hiv/mediacentre/news/southafrican-strategy-sex-workers/en
|
[42]
|
http://data.worldbank.org/indicator/SP.POP.TOTL?locations=CV
|