In this paper, a class of nonlinear differential boundary value problems with variable exponent is investigated. The existence of at least one non-zero solution is established, without assuming on the nonlinear term any condition either at zero or at infinity. The approach is developed within the framework of the Orlicz-Sobolev spaces with variable exponent and it is based on a local minimum theorem for differentiable functions.
Citation: |
[1] |
R. Aboulaich, D. Meskine and A. Souissi, New diffusion models in image processing, Comput. Math. Appl., 56 (2008), 874-882.
doi: 10.1016/j.camwa.2008.01.017.![]() ![]() ![]() |
[2] |
G. Barletta and A. Chinní, Existence of solutions for a Neumann problem involving the $p(x)-$Laplacian, Electron. J. Differential Equations, 2013 (2013), 1-12.
![]() ![]() |
[3] |
G. Bonanno, A critical point theorem via the Ekeland variational principle, Nonlinear Anal., 75 (2012), 2992-3007.
doi: 10.1016/j.na.2011.12.003.![]() ![]() ![]() |
[4] |
G. Bonanno, Relations between the mountain pass theorem and local minima, Adv. Nonlinear Anal., 1 (2012), 205-220.
doi: 10.1515/anona-2012-0003.![]() ![]() ![]() |
[5] |
G. Bonanno and A. Chinní, Discontinuous elliptic problems involving the p(x)-Laplacian, Math. Nachr., 284 (2011), 639-652.
doi: 10.1002/mana.200810232.![]() ![]() ![]() |
[6] |
G. Bonanno and A. Chinní, Existence and multiplicity of weak solutions for elliptic Dirichlet problems with variable exponent, J. Math. Anal. Appl., 418 (2014), 812-827.
doi: 10.1016/j.jmaa.2014.04.016.![]() ![]() ![]() |
[7] |
D. V. Cruz-Uribe and A. Fiorenza,
Variable Lebesgue Spaces Applied and Numerical Harmonic Analysis, Springer Basel, Heidelberg, 2013.
doi: 10.1007/978-3-0348-0548-3.![]() ![]() ![]() |
[8] |
G. D'Aguí and A. Sciammetta, Infinitely many solutions to elliptic problems with variable exponent and nonhomogeneous Neumann conditions, Nonlinear Anal., 75 (2012), 5612-5619.
doi: 10.1016/j.na.2012.05.009.![]() ![]() ![]() |
[9] |
L. Diening, P. Harjulehto, P. Hästö and M. Ružička,
Lebesgue and Sobolev Spaces with Variable Exponents Lecture Notes in Mathematics, Springer-Verlag, Heidelberg, 2017.
doi: 10.1007/978-3-642-18363-8.![]() ![]() ![]() |
[10] |
X.-L. Fan, J. Shen and D. Zhao, Sobolev embedding theorems for spaces $W^{k,p(x)}(Ω)$, J. Math. Anal. Appl., 262 (2001), 749-760.
doi: 10.1006/jmaa.2001.7618.![]() ![]() ![]() |
[11] |
X.-L. Fan and D. Zhao, On the spaces $L^{p(x)}(Ω)$ and $W^{m,p(x)}(Ω)$, J. Math. Anal., 263 (2001), 424-446.
doi: 10.1006/jmaa.2000.7617.![]() ![]() ![]() |
[12] |
X. -L. Fan, Some results on variable exponent analysis, More Progresses in Analysis, Proceedings of the 5th International ISAAC Congress, World Scientific, New Jersey, 2009, 93–99.
doi: 10.1142/9789812835635_0008.![]() ![]() |
[13] |
X.-L. Fan and Q.-H. Zhang, Existence of solutions for $p(x)-$Laplacian Dirichlet problem, Nonlinear Anal., 52 (2003), 1843-1852.
doi: 10.1016/S0362-546X(02)00150-5.![]() ![]() ![]() |
[14] |
X.-L. Fan and S.-G. Deng, Remarks on Ricceri's variational principle and applications to the $p(x)-$Laplacian equations, Nonlinear Anal., 67 (2007), 3064-3075.
doi: 10.1016/j.na.2006.09.060.![]() ![]() ![]() |
[15] |
O. Kováčik and J. Rákosník, On the spaces $L^{p(x)}$ and $W^{1,p(x)}$, Czechoslovak Math., 41 (1991), 592-618.
![]() ![]() |
[16] |
J. Musielak,
Orlicz Spaces and Modular Spaces Lecture Notes in Mathematics 1034, Springer, Berlin, 1983.
doi: 10.1007/BFb0072210.![]() ![]() ![]() |
[17] |
M. Ružička,
Electrorheological Fluids: Modeling and Mathematical Theory Springer-Verlag, Berlin, 2000.
![]() |