For the homogeneous Dirichlet problem involving a system of equations driven by $(p,q)$-Laplacian operators and general gradient dependence we prove the existence of solutions in the ordered rectangle determined by a subsolution-supersolution. This extends the preceding results based on the method of subsolution-supersolution for systems of elliptic equations. Positive and negative solutions are obtained.
Citation: |
[1] |
D. Averna, D. Motreanu and E. Tornatore, Existence and asymptotic properties for quasilinear elliptic equations with gradient dependence, Appl. Math. Lett., 61 (2016), 102-107.
doi: 10.1016/j.aml.2016.05.009.![]() ![]() ![]() |
[2] |
S. Carl, V. K. Le and D. Motreanu, Nonsmooth Variational Problems and Their Inequalities. Comparison Principles and Applications, Springer-Verlag, New York, 2007.
doi: 10.1007/978-0-387-46252-3.![]() ![]() ![]() |
[3] |
S. Carl and D. Motreanu, Extremal solutions for nonvariational quasilinear elliptic systems via expanding trapping regions, Monatsh. Math., 182 (2017), 801-821.
doi: 10.1007/s00605-015-0874-9.![]() ![]() ![]() |
[4] |
A. Cianchi and V. Maz'ya, Global gradient estimates in elliptic problems under minimal data and domain regularity, Commun. Pure Appl. Anal., 14 (2015), 285-311.
doi: 10.3934/cpaa.2015.14.285.![]() ![]() ![]() |
[5] |
D. De Figueiredo, M. Girardi and M. Matzeu, Semilinear elliptic equations with dependence on the gradient via mountain-pass techniques, Differ. Integr. Equ., 17 (2004), 119-126.
![]() ![]() |
[6] |
F. Faraci, D. Motreanu and D. Puglisi, Positive solutions of quasi-linear elliptic equations with dependence on the gradient, Calc. Var. Partial Differential Equations, 54 (2015), 525-538.
doi: 10.1007/s00526-014-0793-y.![]() ![]() ![]() |
[7] |
L. F. O. Faria, O. H. Miyagaki and D. Motreanu, Comparison and positive solutions for problems with $(p, q)$-Laplacian and convection term, Proc. Edinb. Math. Soc., 57 (2014), 687-698.
doi: 10.1017/S0013091513000576.![]() ![]() ![]() |
[8] |
L. F. O. Faria, O. H. Miyagaki, D. Motreanu and M. Tanaka, Existence results for nonlinear elliptic equations with Leray-Lions operator and dependence on the gradient, Nonlinear Anal., 96 (2014), 154-166.
doi: 10.1016/j.na.2013.11.006.![]() ![]() ![]() |
[9] |
D. Motreanu, V. V. Motreanu and N. Papageorgiou, Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems, Springer-Verlag, New York, 2014.
doi: 10.1007/978-1-4614-9323-5.![]() ![]() ![]() |
[10] |
D. Motreanu and M. Tanaka, On a positive solution for $(p, q)$-Laplace equation with indefinite weight, Minimax Theory Appl., 1 (2016), 1-20.
![]() ![]() |
[11] |
D. Motreanu, C. Vetro and F. Vetro, A parametric Dirichlet problem for systems of quasilinear elliptic equations with gradient dependence, Numer. Funct. Anal. Optim., 37 (2016), 1551-1561.
doi: 10.1080/01630563.2016.1219866.![]() ![]() ![]() |
[12] |
P. Pucci and J. Serrin, The Maximum Principle, Birkhäuser Verlag, Basel, 2007.
![]() ![]() |
[13] |
D. Ruiz, A priori estimates and existence of positive solutions for strongly nonlinear problems, J. Differ. Equ., 199 (2004), 96-114.
doi: 10.1016/j.jde.2003.10.021.![]() ![]() ![]() |
[14] |
M. Tanaka, Existence of a positive solution for quasilinear elliptic equations with a nonlinearity including the gradient Bound. Value Probl. 2013 (2013), 11 pp.
doi: 10.1186/1687-2770-2013-173.![]() ![]() ![]() |