We prove an Ambrosetti-Prodi type result for a Neumann problem associated to the equation $u''+f(x, u(x))=μ$ when the nonlinearity has the following form:$f(x, u):=a(x)g(u)-p(x)$. The assumptions considered generalize the classical one, $f(x, u)\to+∞$ as $|u|\to+∞$, without requiring any uniformity condition in $x$. The multiplicity result which characterizes these kind of problems will be proved by means of the shooting method.
Citation: |
[1] |
H. Amann and P. Hess, A multiplicity result for a class of elliptic boundary value problems, Proc. Roy. Soc. Edinburgh Sect. A, 84 (1979), 145-151.
doi: 10.1017/S0308210500017017.![]() ![]() ![]() |
[2] |
A. Ambrosetti, Observations on global inversion theorems, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 22 (2011), 3-15.
doi: 10.4171/RLM/584.![]() ![]() ![]() |
[3] |
A. Ambrosetti and G. Prodi, On the inversion of some differentiable mappings with singularities between Banach spaces, Ann. Mat. Pura Appl. (4), 93 (1972), 231-246.
doi: 10.1007/BF02412022.![]() ![]() ![]() |
[4] |
A. Ambrosetti and G. Prodi,
A Primer of Nonlinear Analysis vol. 34 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1993.
![]() ![]() |
[5] |
H. Berestycki and P. L. Lions, Sharp existence results for a class of semilinear elliptic problems, Bol. Soc. Brasil. Mat., 12 (1981), 9-19.
doi: 10.1007/BF02588317.![]() ![]() ![]() |
[6] |
M. S. Berger and E. Podolak, On the solutions of a nonlinear Dirichlet problem, Indiana
Univ. Math. J., 24 (1974/75), 837-846.
doi: 10.1512/iumj.1975.24.24066.![]() ![]() ![]() |
[7] |
E. N. Dancer, On the ranges of certain weakly nonlinear elliptic partial differential equations, J. Math. Pures Appl. (9), 57 (1978), 351-366.
![]() ![]() |
[8] |
C. De Coster and P. Habets,
Two-point Boundary Value Problems: Lower and Upper Solutions vol. 205 of Mathematics in Science and Engineering, Elsevier B. V. , Amsterdam, 2006.
![]() ![]() |
[9] |
D. G. de Figueiredo,
Lectures on Boundary Value Problems of Ambrosetti-Prodi Type Atas do 12o Seminario Brasileiro de Análise, São Paulo, 1980.
![]() |
[10] |
C. Fabry, J. Mawhin and M. N. Nkashama, A multiplicity result for periodic solutions of forced nonlinear second order ordinary differential equations, Bull. London Math. Soc., 18 (1986), 173-180.
doi: 10.1112/blms/18.2.173.![]() ![]() ![]() |
[11] |
A. Fonda and A. Sfecci, On a singular periodic Ambrosetti-Prodi problem, Nonlinear Anal., 149 (2017), 146-155.
doi: 10.1016/j.na.2016.10.018.![]() ![]() ![]() |
[12] |
S. Fučík, Boundary value problems with jumping nonlinearities, Časopis Pěst. Mat., 101 (1976), 69-87.
![]() ![]() |
[13] |
J. L. Kazdan and F. W. Warner, Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math., 28 (1975), 567-597.
doi: 10.1002/cpa.3160280502.![]() ![]() ![]() |
[14] |
A. Manes and A. M. Micheletti, Un'estensione della teoria variazionale classica degli autovalori per operatori ellittici del secondo ordine, Boll. Un. Mat. Ital. (4), 7 (1973), 285-301.
![]() ![]() |
[15] |
J. Mawhin, Ambrosetti-Prodi type results in nonlinear boundary value problems, in Differential equations and mathematical physics (Birmingham, Ala. , 1986), vol. 1285 of Lecture
Notes in Math. , Springer, Berlin, 1987,290-313.
doi: 10.1007/BFb0080609.![]() ![]() ![]() |
[16] |
J. Mawhin, The periodic Ambrosetti-Prodi problem for nonlinear perturbations of the p-Laplacian, J. Eur. Math. Soc. (JEMS), 8 (2006), 375-388.
doi: 10.4171/JEMS/58.![]() ![]() ![]() |
[17] |
R. Ortega, Stability and index of periodic solutions of an equation of Duffing type, Boll. Un. Mat. Ital. B (7), 3 (1989), 533-546.
![]() ![]() |
[18] |
R. Ortega, Stability of a periodic problem of Ambrosetti-Prodi type, Differential Integral Equations, 3 (1990), 275-284.
![]() ![]() |
[19] |
A. E. Presoto and F. O. de Paiva, A Neumann problem of Ambrosetti-Prodi type, J. Fixed Point Theory Appl., 18 (2016), 189-200.
doi: 10.1007/s11784-015-0277-5.![]() ![]() ![]() |
[20] |
I. Rachůnková, On the number of solutions of the Neumann problem for the ordinary second order differential equation, Ann. Math. Sil., 7 (1993), 79-87.
![]() |
[21] |
E. Sovrano and F. Zanolin, The Ambrosetti-Prodi periodic problem: Different routes to complex dynamics,
Dynam. Systems Appl. (to appear).
![]() |