\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent

  • * Corresponding author: Vicent¸iu D. Rădulescu

    * Corresponding author: Vicent¸iu D. Rădulescu
The second author is supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS-UEFISCDI, project number PN-Ⅲ-P4-ID-PCE-2016-0130.
Abstract Full Text(HTML) Related Papers Cited by
  • The content of this paper is at the interplay between function spaces $L^{p(x)}$ and $W^{k, p(x)}$ with variable exponents and fractional Sobolev spaces $W^{s, p}$. We are concerned with some qualitative properties of the fractional Sobolev space $W^{s, q(x), p(x, y)}$, where $q$ and $p$ are variable exponents and $s∈ (0, 1)$. We also study a related nonlocal operator, which is a fractional version of the nonhomogeneous $p(x)$-Laplace operator. The abstract results established in this paper are applied in the variational analysis of a class of nonlocal fractional problems with several variable exponents.

    Mathematics Subject Classification: Primary: 35J60; Secondary: 35J91, 35S30, 46E35, 58E30.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] G. Autuori and P. Pucci, Elliptic problems involving the fractional Laplacian in $\mathbb{R}^{N}$, J. Differential Equations, 255 (2013), 2340-2362.  doi: 10.1016/j.jde.2013.06.016.
    [2] A. Bahrouni, Trudinger-Moser type inequality and existence of solution for perturbed non-local elliptic operators with exponential nonlinearity, Commun. Pure Appl. Anal., 16 (2017), 243-252.  doi: 10.3934/cpaa.2017011.
    [3] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations Universitext. Springer, New York, 2011. doi: 10.1007/978-0-387-70914-7.
    [4] H. Brezis and E. H. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490.  doi: 10.2307/2044999.
    [5] C. Bucur and E. Valdinoci, Nonlocal Diffusion and Applications Lecture Notes of the Unione Matematica Italiana, 20. Springer, [Cham]; Unione Matematica Italiana, Bologna, 2016. doi: 10.1007/978-3-319-28739-3.
    [6] L. CaffarelliJ.-M. Roquejoffre and Y. Sire, Variational problems for free boundaries for the fractional Laplacian, J. Eur. Math. Soc. (JEMS), 12 (2010), 1151-1179.  doi: 10.4171/JEMS/226.
    [7] L. CaffarelliS. Salsa and L. Silvestre, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian, Invent. Math., 171 (2008), 425-461.  doi: 10.1007/s00222-007-0086-6.
    [8] L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.
    [9] E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.
    [10] S. Dipierro, M. Medina and E. Valdinoci, Fractional Elliptic Problems with Critical Growth in the Whole of ${\mathbb R}^n$ Lecture Notes, Scuola Normale Superiore di Pisa, 15. Edizioni della Normale, Pisa, 2017. doi: 10.1007/978-88-7642-601-8.
    [11] X. Fan and D. Zhao, On the spaces $L^{p(x)}(Ω)$ and $W^{m, p(x)}(Ω)$, J. Math. Anal. Appl., 263 (2001), 424-446.  doi: 10.1006/jmaa.2000.7617.
    [12] U. Kaufmann, J. D. Rossi and R. Vidal, Fractional Sobolev spaces with variable exponents and fractional $p(x)$-Laplacians, preprint, http://mate.dm.uba.ar/~jrossi/krvP.pdf.
    [13] P. Marcellini, Regularity and existence of solutions of elliptic equations with $p, q$-growth conditions, J. Differential Equations, 90 (1991), 1-30.  doi: 10.1016/0022-0396(91)90158-6.
    [14] G. Molica Bisci and V. Rădulescu, Ground state solutions of scalar field fractional Schrödinger equations, Calc. Var. Partial Differential Equations, 54 (2015), 2985-3008.  doi: 10.1007/s00526-015-0891-5.
    [15] G. Molica Bisci, V. Rădulescu and R. Servadei, Variational Methods for Nonlocal Fractional Problems Encyclopedia of Mathematics and its Applications, 162. Cambridge University Press, Cambridge, 2016. doi: 10.1017/CBO9781316282397.
    [16] W. Orlicz, Über konjugierte Exponentenfolgen, Studia Math., 3 (1931), 200-211.  doi: 10.4064/sm-3-1-200-211.
    [17] P. PucciX. Mingqi and B. Zhang, Existence and multiplicity of entire solutions for fractional $p$-Kirchhoff equations, Adv. Nonlinear Anal., 5 (2016), 27-55.  doi: 10.1515/anona-2015-0102.
    [18] V. D. Rădulescu, Nonlinear elliptic equations with variable exponent: old and new, Nonlinear Anal., 121 (2015), 336-369.  doi: 10.1016/j.na.2014.11.007.
    [19] V. D. Rădulescu and D. D. Repovš, Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis Monographs and Research Notes in Mathematics. CRC Press, Boca Raton, FL, 2015. doi: 10.1201/b18601.
    [20] R. Servadei and E. Valdinoci, Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012), 887-898.  doi: 10.1016/j.jmaa.2011.12.032.
    [21] R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013), 2105-2137.  doi: 10.3934/dcds.2013.33.2105.
    [22] J. Simon, Régularité de la solution d'une équation non linéaire dans ${\mathbb R}^N$, Journées d'Analyse Non Linéaire (Proc. Conf., Besançon, 1977), pp. 205-227, Lecture Notes in Math., 665, Springer, Berlin, 1978.
    [23] E. ZeidlerNonlinear Functional Analysis and its Applications, II/B: Nonlinear Monotone Operators, Springer-Verlag, New York, 1990.  doi: 10.1007/978-1-4612-0985-0.
    [24] V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR Ser. Mat., 50 (1986), 675-710. 
  • 加载中
SHARE

Article Metrics

HTML views(1169) PDF downloads(2057) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return