We establish existence and qualitative properties of solutions to the fractional Allen-Cahn equation, which vanish on the Simons cone and are even with respect to the coordinate axes. These solutions are called saddle-shaped solutions.
More precisely, we prove monotonicity properties, asymptotic behaviour, and instability in dimensions $2m=4, 6$. We extend to any fractional power $s$ of the Laplacian, some results obtained for the case $s=1/2$ in [
The interest in the study of saddle-shaped solutions comes in connection with a celebrated De Giorgi conjecture on the one-dimensional symmetry of monotone solutions and of minimizers for the Allen-Cahn equation. Saddle-shaped solutions are candidates to be (not one-dimensional) minimizers in high dimension, a property which is not known to hold yet.
Citation: |
[1] |
G. Alberti, L. Ambrosio and X. Cabré, On a long-standing conjecture of E. De Giorgi: Symmetry in 3D for general nonlinearities and a local minimality property, Acta Appl. Math., 65 (2001), 9-33.
doi: 10.1023/A:1010602715526.![]() ![]() ![]() |
[2] |
L. Ambrosio and X. Cabré, Entire solutions of semilinear elliptic equations in $\mathbb R^3$ and a Conjecture of De Giorgi, Journal Amer. Math. Soc., 13 (2000), 725-739.
doi: 10.1090/S0894-0347-00-00345-3.![]() ![]() ![]() |
[3] |
V. Banica, M. D. M. Gonzalez and M. Saez, Some constructions for the fractional Laplacian on noncompact manifolds, Rev. Mat. Iberoam., 31 (2015), 681-712.
doi: 10.4171/RMI/850.![]() ![]() ![]() |
[4] |
E. Bombieri, E. De Giorgi and E. Giusti, Minimal cones and the Bernstein problem, Invent. Math., 7 (1969), 243-268.
doi: 10.1007/BF01404309.![]() ![]() ![]() |
[5] |
C. Brändle, E. Colorado, A. de Pablo and U. Sanchez, A concave-convex elliptic problem involving the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013), 39-71.
doi: 10.1017/S0308210511000175.![]() ![]() ![]() |
[6] |
C. Bucur and E. Valdinoci,
Nonlocal Diffusion and Applications Lecture Notes of the Unione Matematica Italiana, 20 Springer, Unione Matematica Italiana, Bologna, 2016.
doi: 10.1007/978-3-319-28739-3.![]() ![]() ![]() |
[7] |
X. Cabré, Uniqueness and stability of saddle-shaped solutions to the Allen-Cahn equation, Journal de Mathématiques Pures et Appliquées, 98 (2012), 239-256.
doi: 10.1016/j.matpur.2012.02.006.![]() ![]() ![]() |
[8] |
X. Cabré and E. Cinti, Energy estimates and 1D symmetry for nonlinear equations involving the half-Laplacian, Discrete and Continuous Dynamical Systems, 28 (2010), 1179-1206.
doi: 10.3934/dcds.2010.28.1179.![]() ![]() ![]() |
[9] |
X. Cabré and E. Cinti, Sharp energy estimates for nonlinear fractional diffusion equations, Calc. of Var. and PDE, 49 (2014), 233-269.
doi: 10.1007/s00526-012-0580-6.![]() ![]() ![]() |
[10] |
X. Cabré, E. Cinti and J. Serra, Stable $s$-minimal cones in $\mathbb R^3$ are flat for $s~ 1$, available at https://arxiv.org/abs/1710.08722.
![]() |
[11] |
X. Cabré, E. Cinti and J. Serra, Stable nonlocal phase transitions, forthcoming.
![]() |
[12] |
X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians, Ⅰ: Regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 23-53.
doi: 10.1016/j.anihpc.2013.02.001.![]() ![]() ![]() |
[13] |
X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians Ⅱ: Existence, uniqueness, and qualitative properties of solutions, Trans. Amer. Math. Soc., 367 (2015), 911-941.
doi: 10.1090/S0002-9947-2014-05906-0.![]() ![]() ![]() |
[14] |
X. Cabré and J. Solá-Morales, Layer Solutions in a Halph-Space for Boundary reactions, Comm. Pure and Appl. Math., 58 (2005), 1678-1732.
doi: 10.1002/cpa.20093.![]() ![]() ![]() |
[15] |
X. Cabré and J. Terra, Saddle-shaped solutions of bistable diffusion equations in all of $\mathbb R^{2m}$, J. Eur. Math. Soc., 11 (2009), 819-843.
doi: 10.4171/JEMS/168.![]() ![]() ![]() |
[16] |
X. Cabré and J. Terra, Qualitative properties of saddle-shaped solutions to bistable diffusion equations, Comm. in Partial Differential Equations, 35 (2010), 1923-1957.
doi: 10.1080/03605302.2010.484039.![]() ![]() ![]() |
[17] |
L. Caffarelli, J.-M. Roquejoffre and O. Savin, Nonlocal minimal surfaces, Comm. Pure Appl. Math., 63 (2010), 1111-1144.
doi: 10.1002/cpa.20331.![]() ![]() ![]() |
[18] |
L. Caffarelli and L. Silvestre, An extension related to the fractional Laplacian, Comm. Part. Diff. Eq., 32 (2007), 1245-1260.
doi: 10.1080/03605300600987306.![]() ![]() ![]() |
[19] |
E. Cinti, Saddle-shaped solutions of bistable elliptic equations involving the half-Laplacian, Ann. Sc. Norm. Super. Pisa Cl. Sci., 12 (2013), 623-664.
![]() ![]() |
[20] |
E. Cinti, J. Davila and M. Del Pino, Solutions of the fractional Allen-Cahn equation which are invariant under screw motion, J. Lond. Math. Soc., 94 (2016), 295-313.
doi: 10.1112/jlms/jdw033.![]() ![]() ![]() |
[21] |
E. Cinti, J. Serra and E. Valdinoci, Quantitative flatness results and $BV$-estimates for stable nonlocal minimal surfaces, to appear in J. Diff. Geom.
![]() |
[22] |
H. Dang, P. C. Fife and L. A. Peletier, Saddle solutions of the bistable diffusion equation, Z. Angew Math. Phys., 43 (1992), 984-998.
doi: 10.1007/BF00916424.![]() ![]() ![]() |
[23] |
J. Davila, M. Del Pino and J. Wei, Nonlocal $s$-minimal surfaces and Lawson cones, to appear in J. Diff. Geom.
![]() |
[24] |
M. Del Pino, M. Kowalczyk and J. Wei, On De Giorgi Conjecture in dimension $N≥q 9$, Ann. of Math., 174 (2011), 1485-1569.
doi: 10.4007/annals.2011.174.3.3.![]() ![]() ![]() |
[25] |
S. Dipierro, J. Serra and E. Valdinoci, Improvement of flatness for nonlocal phase transitions, preprint, arXiv: 1611.10105.
![]() |
[26] |
S. Dipierro, A. Farina and E. Valdinoci, A three-dimensional symmetry result for a phase transition equation in the genuinely nonlocal regime, preprint, arXiv: 1705.00320.
![]() |
[27] |
A. Figalli and E. Valdinoci, Regularity and Bernstein-type results for nonlocal minimal surfaces, J. Reine Angew. Math., 729 (2017), 263-273.
doi: 10.1515/crelle-2015-0006.![]() ![]() ![]() |
[28] |
N. Ghoussoub and C. Gui, On a conjecture of De Giorgi and some related problems, Math. Ann., 311 (1998), 481-491.
doi: 10.1007/s002080050196.![]() ![]() ![]() |
[29] |
Y. Y. Li and L. Zhang, Liouville-type theorems and Harnack-type inequalities for semilinear elliptic equations, J. Anal. Math., 90 (2003), 27-87.
doi: 10.1007/BF02786551.![]() ![]() ![]() |
[30] |
Y. Liu, K. Wang and J. Wei, Global minimizers of the Allen-Cahn equation in dimension $n≥q 8$, to appear in Journal de Mathématiques Pures et Appliquées.
![]() |
[31] |
O. Savin, Phase ransitions: Regularity of flat level sets, Ann. of Math., 169 (2009), 41-78.
doi: 10.4007/annals.2009.169.41.![]() ![]() ![]() |
[32] |
O. Savin, Rigidity of minimizers in nonlocal phase transitions, preprint, arXiv: 1610.09295.
![]() |
[33] |
O. Savin and E. Valdinoci, Regularity of nonlocal minimal cones in dimension 2, Calc. of Var. and PDE, 48 (2013), 33-39.
doi: 10.1007/s00526-012-0539-7.![]() ![]() ![]() |
[34] |
O. Savin and E. Valdinoci, $Γ$-convergence for nonlocal phase transitions, Ann. Inst. H. Poincaré Anal. Non Linéaire, 29 (2012), 479-500.
doi: 10.1016/j.anihpc.2012.01.006.![]() ![]() ![]() |
[35] |
M. Schatzman, On the stability of the saddle solution of Allen-Cahn's equation, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), 1241-1275.
doi: 10.1017/S0308210500030493.![]() ![]() ![]() |
[36] |
Y. Sire and E. Valdinoci, Fractional Laplacian phase transitions and boundary reactions: A geometric inequality and a symmetry result, Jour. Functional Analysis, 256 (2009), 1842-1864.
doi: 10.1016/j.jfa.2009.01.020.![]() ![]() ![]() |
[37] |
J. Tan, Positive solutions for non local elliptic problems, Discrete Contin. Dyn. Syst., 33 (2013), 837-859.
doi: 10.3934/dcds.2013.33.837.![]() ![]() ![]() |