-
Previous Article
Unsteady MHD slip flow of non Newtonian power-law nanofluid over a moving surface with temperature dependent thermal conductivity
- DCDS-S Home
- This Issue
-
Next Article
Exact solution of magnetohydrodynamic slip flow and heat transfer over an oscillating and translating porous plate
Conservation laws and symmetries of time-dependent generalized KdV equations
a. | Department of Mathematics and Statistics, Brock University, St. Catharines, Canada |
b. | Departamento de Matemáticas, Universidad de Cádiz, Polígono del Río San Pedro s/n 11510 Puerto Real, Cádiz, Spain |
A complete classification of low-order conservation laws is obtained for time-dependent generalized Korteweg-de Vries equations. Through the Hamiltonian structure of these equations, a corresponding classification of Hamiltonian symmetries is derived. The physical meaning of the conservation laws and the symmetries is discussed.
References:
[1] |
S. C. Anco and G. Bluman,
Direct Construction of Conservation Laws from Field Equations, Phys. Rev. Lett., 78 (1997), 2869-2873.
doi: 10.1103/PhysRevLett.78.2869. |
[2] |
S. C. Anco and G. Bluman,
Direct construction method for conservation laws of partial differential equations Ⅱ: General treatment, Euro. J. Appl. Math., 13 (2002), 567-585.
doi: 10.1017/S0956792501004661. |
[3] |
S. C. Anco,
Generalization of Noether's theorem in modern form to non-variational partial differential equations, Recent progress and Modern Challenges in Applied Mathematics,
Modeling and Computational Science, 79 (2017), 119-182.
doi: 10.1007/978-1-4939-6969-2_5. |
[4] |
S. C. Anco and M. L. Gandarias, Conservation laws and symmetries of a class of dispersive semilinear wave equations, in preparation, 2017. |
[5] |
S. C. Anco and G. Bluman,
Direct construction method for conservation laws of partial differential equations Ⅰ: Examples of conservation law classifications, Euro. Jour. Appl. Math., 13 (2002), 545-566.
doi: 10.1017/S0956792501004661. |
[6] |
I. Bakirtas and H. Demiray,
Weakly nonlinear waves in a tapered elastic tube filled with an inviscid fluid, Int. J. Nonlinear Mech., 40 (2005), 785-793.
doi: 10.1016/j.ijnonlinmec.2004.03.003. |
[7] |
G. W. Bluman, A Cheviakov and S. C. Anco,
Applications of Symmetry Methods to Partial Differential Equations, New York: Springer, 2010.
doi: 10.1007/978-0-387-68028-6. |
[8] |
R. C. Cascaval, Variable coefficient KdV equations and waves in elastic tubes, in Evolution Equations (eds. G.R. Goldstein, R. Nagel, S. Romanelli), 57-69, Lecture Notes in Pure and Appl. Math., 234, Dekker, New York, 2003. |
[9] |
H. Demiray, The effect of a bump on wave propagation in a fluid-filled elastic tube, Int. J. Eng. Sci., 42 (2004), 203-215; ibid, Weakly nonlinear waves in a linearly tapered elastic tube filled with a fluid, Math. Comput. Mod., 39 (2004), 151-162.
doi: 10.1016/S0020-7225(03)00284-2. |
[10] |
A. G. Johnpillai, C. M. Khalique and A. Biswas,
Exact solutions of KdV equation with time-dependent coefficients, Applied Mathematics and Computation, 216 (2010), 3114-3119.
doi: 10.1016/j.amc.2010.03.133. |
[11] |
T. Kakutani and H. Ono, J. Phys. Soc. Jpn., 26 (1969), 1305-1318. |
[12] |
W.-X. Ma, R. K. Bullough, P. J. Caudrey and W. I. Fushchych,
Time-dependent symmetries of variable-coefficient evolution equations and graded Lie algebras, J. Phys. A: Math. Gen., 30 (1997), 5141-5149.
doi: 10.1088/0305-4470/30/14/023. |
[13] |
W.-X. Ma and R. Zhou,
Adjoint symmetry constraints leading to binary nonlinearization, J. Nonlin. Math. Phys., 9 (2002), 106-126.
doi: 10.2991/jnmp.2002.9.s1.10. |
[14] |
M. Moulati and C. M. Khalique,
Group analysis of a generalized KdV equation, Appl. Math. Inf. Sci., 8 (2014), 2845-2848.
doi: 10.12785/amis/080620. |
[15] |
V. Narayanamurti and C. M. Varma,
Nonlinear propagation of heat pulses in solids, Phys. Rev. Lett., 25 (1970), 1105-1108.
doi: 10.1103/PhysRevLett.25.1105. |
[16] |
P. J. Olver,
Applications of Lie Groups to Differential Equations, Berlin: Springer, 1986.
doi: 10.1007/978-1-4684-0274-2. |
[17] |
R. O. Popovych and A. Sergyeyev,
Conservation laws and normal forms of evolution equations, Phys. Lett. A, 374 (2010), 2210-2217.
doi: 10.1016/j.physleta.2010.03.033. |
[18] |
F. D. Tappert and C. M. Varma,
Asymptotic theory of self-trapping of heat pulses in solids, Phys. Rev. Lett., 25 (1970), 1108-1111.
doi: 10.1103/PhysRevLett.25.1108. |
[19] |
M. Wadati,
Wave propagation in nonlinear lattice, J. Phys. Soc. Japan, 38 (1975), 673-680.
doi: 10.1143/JPSJ.38.673. |
[20] |
N. J. Zabusky, A synergetic approach to problems of nonlinear dispersive wave propagation and interaction, in Proc. Symp. Nonlinear Partial Differential Equations (ed. W. Ames), 223-258, Academic Press, 1967. |
show all references
References:
[1] |
S. C. Anco and G. Bluman,
Direct Construction of Conservation Laws from Field Equations, Phys. Rev. Lett., 78 (1997), 2869-2873.
doi: 10.1103/PhysRevLett.78.2869. |
[2] |
S. C. Anco and G. Bluman,
Direct construction method for conservation laws of partial differential equations Ⅱ: General treatment, Euro. J. Appl. Math., 13 (2002), 567-585.
doi: 10.1017/S0956792501004661. |
[3] |
S. C. Anco,
Generalization of Noether's theorem in modern form to non-variational partial differential equations, Recent progress and Modern Challenges in Applied Mathematics,
Modeling and Computational Science, 79 (2017), 119-182.
doi: 10.1007/978-1-4939-6969-2_5. |
[4] |
S. C. Anco and M. L. Gandarias, Conservation laws and symmetries of a class of dispersive semilinear wave equations, in preparation, 2017. |
[5] |
S. C. Anco and G. Bluman,
Direct construction method for conservation laws of partial differential equations Ⅰ: Examples of conservation law classifications, Euro. Jour. Appl. Math., 13 (2002), 545-566.
doi: 10.1017/S0956792501004661. |
[6] |
I. Bakirtas and H. Demiray,
Weakly nonlinear waves in a tapered elastic tube filled with an inviscid fluid, Int. J. Nonlinear Mech., 40 (2005), 785-793.
doi: 10.1016/j.ijnonlinmec.2004.03.003. |
[7] |
G. W. Bluman, A Cheviakov and S. C. Anco,
Applications of Symmetry Methods to Partial Differential Equations, New York: Springer, 2010.
doi: 10.1007/978-0-387-68028-6. |
[8] |
R. C. Cascaval, Variable coefficient KdV equations and waves in elastic tubes, in Evolution Equations (eds. G.R. Goldstein, R. Nagel, S. Romanelli), 57-69, Lecture Notes in Pure and Appl. Math., 234, Dekker, New York, 2003. |
[9] |
H. Demiray, The effect of a bump on wave propagation in a fluid-filled elastic tube, Int. J. Eng. Sci., 42 (2004), 203-215; ibid, Weakly nonlinear waves in a linearly tapered elastic tube filled with a fluid, Math. Comput. Mod., 39 (2004), 151-162.
doi: 10.1016/S0020-7225(03)00284-2. |
[10] |
A. G. Johnpillai, C. M. Khalique and A. Biswas,
Exact solutions of KdV equation with time-dependent coefficients, Applied Mathematics and Computation, 216 (2010), 3114-3119.
doi: 10.1016/j.amc.2010.03.133. |
[11] |
T. Kakutani and H. Ono, J. Phys. Soc. Jpn., 26 (1969), 1305-1318. |
[12] |
W.-X. Ma, R. K. Bullough, P. J. Caudrey and W. I. Fushchych,
Time-dependent symmetries of variable-coefficient evolution equations and graded Lie algebras, J. Phys. A: Math. Gen., 30 (1997), 5141-5149.
doi: 10.1088/0305-4470/30/14/023. |
[13] |
W.-X. Ma and R. Zhou,
Adjoint symmetry constraints leading to binary nonlinearization, J. Nonlin. Math. Phys., 9 (2002), 106-126.
doi: 10.2991/jnmp.2002.9.s1.10. |
[14] |
M. Moulati and C. M. Khalique,
Group analysis of a generalized KdV equation, Appl. Math. Inf. Sci., 8 (2014), 2845-2848.
doi: 10.12785/amis/080620. |
[15] |
V. Narayanamurti and C. M. Varma,
Nonlinear propagation of heat pulses in solids, Phys. Rev. Lett., 25 (1970), 1105-1108.
doi: 10.1103/PhysRevLett.25.1105. |
[16] |
P. J. Olver,
Applications of Lie Groups to Differential Equations, Berlin: Springer, 1986.
doi: 10.1007/978-1-4684-0274-2. |
[17] |
R. O. Popovych and A. Sergyeyev,
Conservation laws and normal forms of evolution equations, Phys. Lett. A, 374 (2010), 2210-2217.
doi: 10.1016/j.physleta.2010.03.033. |
[18] |
F. D. Tappert and C. M. Varma,
Asymptotic theory of self-trapping of heat pulses in solids, Phys. Rev. Lett., 25 (1970), 1108-1111.
doi: 10.1103/PhysRevLett.25.1108. |
[19] |
M. Wadati,
Wave propagation in nonlinear lattice, J. Phys. Soc. Japan, 38 (1975), 673-680.
doi: 10.1143/JPSJ.38.673. |
[20] |
N. J. Zabusky, A synergetic approach to problems of nonlinear dispersive wave propagation and interaction, in Proc. Symp. Nonlinear Partial Differential Equations (ed. W. Ames), 223-258, Academic Press, 1967. |
[1] |
María-Santos Bruzón, Elena Recio, Tamara-María Garrido, Rafael de la Rosa. Lie symmetries, conservation laws and exact solutions of a generalized quasilinear KdV equation with degenerate dispersion. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : 2691-2701. doi: 10.3934/dcdss.2020222 |
[2] |
María Santos Bruzón, Tamara María Garrido. Symmetries and conservation laws of a KdV6 equation. Discrete and Continuous Dynamical Systems - S, 2018, 11 (4) : 631-641. doi: 10.3934/dcdss.2018038 |
[3] |
Annie Millet, Svetlana Roudenko. Generalized KdV equation subject to a stochastic perturbation. Discrete and Continuous Dynamical Systems - B, 2018, 23 (3) : 1177-1198. doi: 10.3934/dcdsb.2018147 |
[4] |
Rowan Killip, Soonsik Kwon, Shuanglin Shao, Monica Visan. On the mass-critical generalized KdV equation. Discrete and Continuous Dynamical Systems, 2012, 32 (1) : 191-221. doi: 10.3934/dcds.2012.32.191 |
[5] |
Afaf Bouharguane. On the instability of a nonlocal conservation law. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 419-426. doi: 10.3934/dcdss.2012.5.419 |
[6] |
Benjamin Dodson, Cristian Gavrus. Instability of the soliton for the focusing, mass-critical generalized KdV equation. Discrete and Continuous Dynamical Systems, 2022, 42 (4) : 1767-1799. doi: 10.3934/dcds.2021171 |
[7] |
Aiyong Chen, Chi Zhang, Wentao Huang. Limit speed of traveling wave solutions for the perturbed generalized KdV equation. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022048 |
[8] |
Giuseppe Maria Coclite, Lorenzo Di Ruvo. A note on the convergence of the solution of the high order Camassa-Holm equation to the entropy ones of a scalar conservation law. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1247-1282. doi: 10.3934/dcds.2017052 |
[9] |
Giuseppe Maria Coclite, Lorenzo di Ruvo. A note on the convergence of the solutions of the Camassa-Holm equation to the entropy ones of a scalar conservation law. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 2981-2990. doi: 10.3934/dcds.2016.36.2981 |
[10] |
Alberto Bressan, Graziano Guerra. Shift-differentiabilitiy of the flow generated by a conservation law. Discrete and Continuous Dynamical Systems, 1997, 3 (1) : 35-58. doi: 10.3934/dcds.1997.3.35 |
[11] |
Alberto Bressan, Khai T. Nguyen. Conservation law models for traffic flow on a network of roads. Networks and Heterogeneous Media, 2015, 10 (2) : 255-293. doi: 10.3934/nhm.2015.10.255 |
[12] |
Robert I. McLachlan, G. R. W. Quispel. Discrete gradient methods have an energy conservation law. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 1099-1104. doi: 10.3934/dcds.2014.34.1099 |
[13] |
Julien Jimenez. Scalar conservation law with discontinuous flux in a bounded domain. Conference Publications, 2007, 2007 (Special) : 520-530. doi: 10.3934/proc.2007.2007.520 |
[14] |
Dmitry V. Zenkov. Linear conservation laws of nonholonomic systems with symmetry. Conference Publications, 2003, 2003 (Special) : 967-976. doi: 10.3934/proc.2003.2003.967 |
[15] |
Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3851-3863. doi: 10.3934/dcdss.2020445 |
[16] |
Raimund Bürger, Stefan Diehl, María Carmen Martí. A conservation law with multiply discontinuous flux modelling a flotation column. Networks and Heterogeneous Media, 2018, 13 (2) : 339-371. doi: 10.3934/nhm.2018015 |
[17] |
Darko Mitrovic. Existence and stability of a multidimensional scalar conservation law with discontinuous flux. Networks and Heterogeneous Media, 2010, 5 (1) : 163-188. doi: 10.3934/nhm.2010.5.163 |
[18] |
Jean-Michel Coron, Matthias Kawski, Zhiqiang Wang. Analysis of a conservation law modeling a highly re-entrant manufacturing system. Discrete and Continuous Dynamical Systems - B, 2010, 14 (4) : 1337-1359. doi: 10.3934/dcdsb.2010.14.1337 |
[19] |
Juan-Ming Yuan, Jiahong Wu. The complex KdV equation with or without dissipation. Discrete and Continuous Dynamical Systems - B, 2005, 5 (2) : 489-512. doi: 10.3934/dcdsb.2005.5.489 |
[20] |
L. Bakker. A reducible representation of the generalized symmetry group of a quasiperiodic flow. Conference Publications, 2003, 2003 (Special) : 68-77. doi: 10.3934/proc.2003.2003.68 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]