October  2018, 11(5): 915-939. doi: 10.3934/dcdss.2018055

Large time average of reachable sets and Applications to Homogenization of interfaces moving with oscillatory spatio-temporal velocity

1. 

Yau Mathematical Sciences Center, Tsinghua University, No 1. Tsinghua Yuan, Beijing 100084, China

2. 

Department of Mathematics, The University of Chicago, 5734 S. University Ave., Chicago, IL 60637, USA

3. 

Department of Mathematics, University of Wisconsin at Madison, 480 Lincoln Drive, Madison, WI 53706, USA

* Corresponding author: Wenjia Jing

Received  February 2017 Revised  July 2017 Published  June 2018

We study the averaging of fronts moving with positive oscillatory normal velocity, which is periodic in space and stationary ergodic in time. The problem can be formulated as the homogenization of coercive level set Hamilton-Jacobi equations with spatio-temporal oscillations. To overcome the difficulties due to the oscillations in time and the linear growth of the Hamiltonian, we first study the long time averaged behavior of the associated reachable sets using geometric arguments. The results are new for higher than one dimensions even in the space-time periodic setting.

Citation: Wenjia Jing, Panagiotis E. Souganidis, Hung V. Tran. Large time average of reachable sets and Applications to Homogenization of interfaces moving with oscillatory spatio-temporal velocity. Discrete and Continuous Dynamical Systems - S, 2018, 11 (5) : 915-939. doi: 10.3934/dcdss.2018055
References:
[1]

O. Alvarez and M. Bardi, Ergodicity, stabilization, and singular perturbations for Bellman-Isaacs equations Mem. Amer. Math. Soc. , 204 (2010), vi+77pp. doi: 10.1090/S0065-9266-09-00588-2.

[2]

M. Arisawa and P.-L. Lions, On ergodic stochastic control, Comm. Partial Differential Equations, 23 (1998), 2187-2217.  doi: 10.1080/03605309808821413.

[3]

S. N. Armstrong and P. Cardaliaguet, Stochastic homogenization of quasilinear Hamilton-Jacobi equations and geometric motions, J. Eur. Math. Soc., 20 (2018), 797-864.  doi: 10.4171/JEMS/777.

[4]

S. N. Armstrong and P. E. Souganidis, Stochastic homogenization of Hamilton-Jacobi and degenerate Bellman equations in unbounded environments, J. Math. Pures Appl. (9), 97 (2012), 460-504.  doi: 10.1016/j.matpur.2011.09.009.

[5]

S. N. Armstrong and P. E. Souganidis, Stochastic homogenization of level-set convex Hamilton-Jacobi equations, Int. Math. Res. Not., 2013 (2013), 3420-3449.  doi: 10.1093/imrn/rns155.

[6]

S. N. Armstrong and H. V. Tran, Stochastic homogenization of viscous Hamilton-Jacobi equations and applications, Anal. PDE, 7 (2014), 1969-2007.  doi: 10.2140/apde.2014.7.1969.

[7]

S. N. ArmstrongH. V. Tran and Y. Yu, Stochastic homogenization of a nonconvex Hamilton-Jacobi equation, Calc. Var. Partial Differential Equations, 54 (2015), 1507-1524.  doi: 10.1007/s00526-015-0833-2.

[8]

S. N. ArmstrongH. V. Tran and Y. Yu, Stochastic homogenization of nonconvex Hamilton-Jacobi equations in one space dimension, J. Differential Equations, 261 (2016), 2702-2737.  doi: 10.1016/j.jde.2016.05.010.

[9]

V. I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations, second ed., vol. 250 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, New York, 1988. Translated from the Russian by Joseph Szücs [József M. Szűcs]. doi: 10.1007/978-1-4612-1037-5.

[10]

G. Barles, Some homogenization results for non-coercive Hamilton-Jacobi equations, Calc. Var. Partial Differential Equations, 30 (2007), 449-466.  doi: 10.1007/s00526-007-0097-6.

[11]

P. Cannarsa and H. Frankowska, Interior sphere property of attainable sets and time optimal control problems, ESAIM Control Optim. Calc. Var., 12 (2006), 350-370 (electronic).  doi: 10.1051/cocv:2006002.

[12]

P. Cardaliaguet, Ergodicity of Hamilton-Jacobi equations with a noncoercive nonconvex Hamiltonian in $\mathbb{ R}^2/\mathbb {Z}^2$, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 837-856.  doi: 10.1016/j.anihpc.2009.11.015.

[13]

P. CardaliaguetP.-L. Lions and P. E. Souganidis, A discussion about the homogenization of moving interfaces, J. Math. Pures Appl. (9), 91 (2009), 339-363.  doi: 10.1016/j.matpur.2009.01.014.

[14]

P. CardaliaguetJ. Nolen and P. E. Souganidis, Homogenization and enhancement for the G-equation, Arch. Ration. Mech. Anal., 199 (2011), 527-561.  doi: 10.1007/s00205-010-0332-8.

[15]

P. Cardaliaguet and L. Silvestre, Hölder continuity to Hamilton-Jacobi equations with superquadratic growth in the gradient and unbounded right-hand side, Comm. Partial Differential Equations, 37 (2012), 1668-1688.  doi: 10.1080/03605302.2012.660267.

[16]

P. Cardaliaguet and P. E. Souganidis, Homogenization and enhancement of the G-equation in random environments, Comm. Pure Appl. Math., 66 (2013), 1582-1628.  doi: 10.1002/cpa.21449.

[17]

A. CiomagaP. E. Souganidis and H. V. Tran, Stochastic homogenization of interfaces moving with changing sign velocity, J. Differential Equations, 258 (2015), 1025-1057.  doi: 10.1016/j.jde.2014.09.019.

[18]

L. C. Evans, The perturbed test function method for viscosity solutions of nonlinear PDE, Proc. Roy. Soc. Edinburgh Sect. A, 111 (1989), 359-375.  doi: 10.1017/S0308210500018631.

[19]

L. C. Evans, Periodic homogenisation of certain fully nonlinear partial differential equations, Proc. Roy. Soc. Edinburgh Sect. A, 120 (1992), 245-265.  doi: 10.1017/S0308210500032121.

[20]

W. Feldman and P. E. Souganidis, Homogenization and non-homogenization of certain non-convex hamilton-jacobi equations, J. Math. Pures Appl., 55 (2017), 751-782. 

[21]

H. Gao, Random homogenization of coercive Hamilton-Jacobi equations in 1d, Calc. Var. Partial Differential Equations, 55 (2016), Art. 30, 39pp. doi: 10.1007/s00526-016-0968-9.

[22]

J. C. Hansen and P. Hulse, Subadditive ergodic theorems for random sets in infinite dimensions, Statist. Probab. Lett., 50 (2000), 409-416.  doi: 10.1016/S0167-7152(00)00156-5.

[23]

C. Imbert and R. Monneau, Homogenization of first-order equations with (u/ε)-periodic Hamiltonians. I. Local equations, Arch. Ration. Mech. Anal., 187 (2008), 49-89.  doi: 10.1007/s00205-007-0074-4.

[24]

H. Ishii, Almost periodic homogenization of Hamilton-Jacobi equations, In International Conference on Differential Equations, Vol. 1, 2 (Berlin, 1999). World Sci. Publ., River Edge, NJ, 2000,600-605.

[25]

E. KosyginaF. Rezakhanlou and S. R. S. Varadhan, Stochastic homogenization of Hamilton-Jacobi-Bellman equations, Comm. Pure Appl. Math., 59 (2006), 1489-1521.  doi: 10.1002/cpa.20137.

[26]

E. Kosygina and S. R. S. Varadhan, Homogenization of Hamilton-Jacobi-Bellman equations with respect to time-space shifts in a stationary ergodic medium, Comm. Pure Appl. Math., 61 (2008), 816-847.  doi: 10.1002/cpa.20220.

[27]

W. Li and K. Lu, Rotation numbers for random dynamical systems on the circle, Trans. Amer. Math. Soc., 360 (2008), 5509-5528.  doi: 10.1090/S0002-9947-08-04619-9.

[28]

P. -L. Lions, G. C. Papanicolaou and S. Varadhan, Homogenization of Hamilton-Jacobi equations, Unpublished preprint, 1987.

[29]

P.-L. Lions and P. E. Souganidis, Stochastic homogenization of Hamilton-Jacobi and "viscous"-Hamilton-Jacobi equations with convex nonlinearities-revisited, Commun. Math. Sci., 8 (2010), 627-637.  doi: 10.4310/CMS.2010.v8.n2.a14.

[30]

A. J. Majda and P. E. Souganidis, Large-scale front dynamics for turbulent reaction-diffusion equations with separated velocity scales, Nonlinearity, 7 (1994), 1-30.  doi: 10.1088/0951-7715/7/1/001.

[31]

J. Nolen and A. Novikov, Homogenization of the G-equation with incompressible random drift in two dimensions, Commun. Math. Sci., 9 (2011), 561-582.  doi: 10.4310/CMS.2011.v9.n2.a11.

[32]

F. Rezakhanlou and J. E. Tarver, Homogenization for stochastic Hamilton-Jacobi equations, Arch. Ration. Mech. Anal., 151 (2000), 277-309.  doi: 10.1007/s002050050198.

[33]

R. T. Rockafellar, Convex Analysis, Princeton Mathematical Series, No. 28. Princeton University Press, Princeton, N. J., 1970.

[34]

K. Schürger, Ergodic theorems for subadditive superstationary families of convex compact random sets, Z. Wahrsch. Verw. Gebiete, 62 (1983), 125-135.  doi: 10.1007/BF00532166.

[35]

R. W. Schwab, Stochastic homogenization of Hamilton-Jacobi equations in stationary ergodic spatio-temporal media, Indiana Univ. Math. J., 58 (2009), 537-581.  doi: 10.1512/iumj.2009.58.3455.

[36]

B. Simon, Convexity, vol. 187 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 2011. An analytic viewpoint. doi: 10.1017/CBO9780511910135.

[37]

P. E. Souganidis, Stochastic homogenization of Hamilton-Jacobi equations and some applications, Asymptot. Anal., 20 (1999), 1-11. 

[38]

J. Xin and Y. Yu, Periodic homogenization of the inviscid G-equation for incompressible flows, Commun. Math. Sci., 8 (2010), 1067-1078.  doi: 10.4310/CMS.2010.v8.n4.a14.

[39]

B. Ziliotto, Stochastic homogenization of nonconvex hamilton-jacobi equations: A counterexample, Comm. Pure Appl. Math., 70 (2017), 1798-1809.  doi: 10.1002/cpa.21674.

show all references

References:
[1]

O. Alvarez and M. Bardi, Ergodicity, stabilization, and singular perturbations for Bellman-Isaacs equations Mem. Amer. Math. Soc. , 204 (2010), vi+77pp. doi: 10.1090/S0065-9266-09-00588-2.

[2]

M. Arisawa and P.-L. Lions, On ergodic stochastic control, Comm. Partial Differential Equations, 23 (1998), 2187-2217.  doi: 10.1080/03605309808821413.

[3]

S. N. Armstrong and P. Cardaliaguet, Stochastic homogenization of quasilinear Hamilton-Jacobi equations and geometric motions, J. Eur. Math. Soc., 20 (2018), 797-864.  doi: 10.4171/JEMS/777.

[4]

S. N. Armstrong and P. E. Souganidis, Stochastic homogenization of Hamilton-Jacobi and degenerate Bellman equations in unbounded environments, J. Math. Pures Appl. (9), 97 (2012), 460-504.  doi: 10.1016/j.matpur.2011.09.009.

[5]

S. N. Armstrong and P. E. Souganidis, Stochastic homogenization of level-set convex Hamilton-Jacobi equations, Int. Math. Res. Not., 2013 (2013), 3420-3449.  doi: 10.1093/imrn/rns155.

[6]

S. N. Armstrong and H. V. Tran, Stochastic homogenization of viscous Hamilton-Jacobi equations and applications, Anal. PDE, 7 (2014), 1969-2007.  doi: 10.2140/apde.2014.7.1969.

[7]

S. N. ArmstrongH. V. Tran and Y. Yu, Stochastic homogenization of a nonconvex Hamilton-Jacobi equation, Calc. Var. Partial Differential Equations, 54 (2015), 1507-1524.  doi: 10.1007/s00526-015-0833-2.

[8]

S. N. ArmstrongH. V. Tran and Y. Yu, Stochastic homogenization of nonconvex Hamilton-Jacobi equations in one space dimension, J. Differential Equations, 261 (2016), 2702-2737.  doi: 10.1016/j.jde.2016.05.010.

[9]

V. I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations, second ed., vol. 250 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, New York, 1988. Translated from the Russian by Joseph Szücs [József M. Szűcs]. doi: 10.1007/978-1-4612-1037-5.

[10]

G. Barles, Some homogenization results for non-coercive Hamilton-Jacobi equations, Calc. Var. Partial Differential Equations, 30 (2007), 449-466.  doi: 10.1007/s00526-007-0097-6.

[11]

P. Cannarsa and H. Frankowska, Interior sphere property of attainable sets and time optimal control problems, ESAIM Control Optim. Calc. Var., 12 (2006), 350-370 (electronic).  doi: 10.1051/cocv:2006002.

[12]

P. Cardaliaguet, Ergodicity of Hamilton-Jacobi equations with a noncoercive nonconvex Hamiltonian in $\mathbb{ R}^2/\mathbb {Z}^2$, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 837-856.  doi: 10.1016/j.anihpc.2009.11.015.

[13]

P. CardaliaguetP.-L. Lions and P. E. Souganidis, A discussion about the homogenization of moving interfaces, J. Math. Pures Appl. (9), 91 (2009), 339-363.  doi: 10.1016/j.matpur.2009.01.014.

[14]

P. CardaliaguetJ. Nolen and P. E. Souganidis, Homogenization and enhancement for the G-equation, Arch. Ration. Mech. Anal., 199 (2011), 527-561.  doi: 10.1007/s00205-010-0332-8.

[15]

P. Cardaliaguet and L. Silvestre, Hölder continuity to Hamilton-Jacobi equations with superquadratic growth in the gradient and unbounded right-hand side, Comm. Partial Differential Equations, 37 (2012), 1668-1688.  doi: 10.1080/03605302.2012.660267.

[16]

P. Cardaliaguet and P. E. Souganidis, Homogenization and enhancement of the G-equation in random environments, Comm. Pure Appl. Math., 66 (2013), 1582-1628.  doi: 10.1002/cpa.21449.

[17]

A. CiomagaP. E. Souganidis and H. V. Tran, Stochastic homogenization of interfaces moving with changing sign velocity, J. Differential Equations, 258 (2015), 1025-1057.  doi: 10.1016/j.jde.2014.09.019.

[18]

L. C. Evans, The perturbed test function method for viscosity solutions of nonlinear PDE, Proc. Roy. Soc. Edinburgh Sect. A, 111 (1989), 359-375.  doi: 10.1017/S0308210500018631.

[19]

L. C. Evans, Periodic homogenisation of certain fully nonlinear partial differential equations, Proc. Roy. Soc. Edinburgh Sect. A, 120 (1992), 245-265.  doi: 10.1017/S0308210500032121.

[20]

W. Feldman and P. E. Souganidis, Homogenization and non-homogenization of certain non-convex hamilton-jacobi equations, J. Math. Pures Appl., 55 (2017), 751-782. 

[21]

H. Gao, Random homogenization of coercive Hamilton-Jacobi equations in 1d, Calc. Var. Partial Differential Equations, 55 (2016), Art. 30, 39pp. doi: 10.1007/s00526-016-0968-9.

[22]

J. C. Hansen and P. Hulse, Subadditive ergodic theorems for random sets in infinite dimensions, Statist. Probab. Lett., 50 (2000), 409-416.  doi: 10.1016/S0167-7152(00)00156-5.

[23]

C. Imbert and R. Monneau, Homogenization of first-order equations with (u/ε)-periodic Hamiltonians. I. Local equations, Arch. Ration. Mech. Anal., 187 (2008), 49-89.  doi: 10.1007/s00205-007-0074-4.

[24]

H. Ishii, Almost periodic homogenization of Hamilton-Jacobi equations, In International Conference on Differential Equations, Vol. 1, 2 (Berlin, 1999). World Sci. Publ., River Edge, NJ, 2000,600-605.

[25]

E. KosyginaF. Rezakhanlou and S. R. S. Varadhan, Stochastic homogenization of Hamilton-Jacobi-Bellman equations, Comm. Pure Appl. Math., 59 (2006), 1489-1521.  doi: 10.1002/cpa.20137.

[26]

E. Kosygina and S. R. S. Varadhan, Homogenization of Hamilton-Jacobi-Bellman equations with respect to time-space shifts in a stationary ergodic medium, Comm. Pure Appl. Math., 61 (2008), 816-847.  doi: 10.1002/cpa.20220.

[27]

W. Li and K. Lu, Rotation numbers for random dynamical systems on the circle, Trans. Amer. Math. Soc., 360 (2008), 5509-5528.  doi: 10.1090/S0002-9947-08-04619-9.

[28]

P. -L. Lions, G. C. Papanicolaou and S. Varadhan, Homogenization of Hamilton-Jacobi equations, Unpublished preprint, 1987.

[29]

P.-L. Lions and P. E. Souganidis, Stochastic homogenization of Hamilton-Jacobi and "viscous"-Hamilton-Jacobi equations with convex nonlinearities-revisited, Commun. Math. Sci., 8 (2010), 627-637.  doi: 10.4310/CMS.2010.v8.n2.a14.

[30]

A. J. Majda and P. E. Souganidis, Large-scale front dynamics for turbulent reaction-diffusion equations with separated velocity scales, Nonlinearity, 7 (1994), 1-30.  doi: 10.1088/0951-7715/7/1/001.

[31]

J. Nolen and A. Novikov, Homogenization of the G-equation with incompressible random drift in two dimensions, Commun. Math. Sci., 9 (2011), 561-582.  doi: 10.4310/CMS.2011.v9.n2.a11.

[32]

F. Rezakhanlou and J. E. Tarver, Homogenization for stochastic Hamilton-Jacobi equations, Arch. Ration. Mech. Anal., 151 (2000), 277-309.  doi: 10.1007/s002050050198.

[33]

R. T. Rockafellar, Convex Analysis, Princeton Mathematical Series, No. 28. Princeton University Press, Princeton, N. J., 1970.

[34]

K. Schürger, Ergodic theorems for subadditive superstationary families of convex compact random sets, Z. Wahrsch. Verw. Gebiete, 62 (1983), 125-135.  doi: 10.1007/BF00532166.

[35]

R. W. Schwab, Stochastic homogenization of Hamilton-Jacobi equations in stationary ergodic spatio-temporal media, Indiana Univ. Math. J., 58 (2009), 537-581.  doi: 10.1512/iumj.2009.58.3455.

[36]

B. Simon, Convexity, vol. 187 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 2011. An analytic viewpoint. doi: 10.1017/CBO9780511910135.

[37]

P. E. Souganidis, Stochastic homogenization of Hamilton-Jacobi equations and some applications, Asymptot. Anal., 20 (1999), 1-11. 

[38]

J. Xin and Y. Yu, Periodic homogenization of the inviscid G-equation for incompressible flows, Commun. Math. Sci., 8 (2010), 1067-1078.  doi: 10.4310/CMS.2010.v8.n4.a14.

[39]

B. Ziliotto, Stochastic homogenization of nonconvex hamilton-jacobi equations: A counterexample, Comm. Pure Appl. Math., 70 (2017), 1798-1809.  doi: 10.1002/cpa.21674.

Figure 1.  The construction of admissible paths
[1]

Mihai Bostan, Gawtum Namah. Time periodic viscosity solutions of Hamilton-Jacobi equations. Communications on Pure and Applied Analysis, 2007, 6 (2) : 389-410. doi: 10.3934/cpaa.2007.6.389

[2]

Piermarco Cannarsa, Marco Mazzola, Carlo Sinestrari. Global propagation of singularities for time dependent Hamilton-Jacobi equations. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4225-4239. doi: 10.3934/dcds.2015.35.4225

[3]

Gawtum Namah, Mohammed Sbihi. A notion of extremal solutions for time periodic Hamilton-Jacobi equations. Discrete and Continuous Dynamical Systems - B, 2010, 13 (3) : 647-664. doi: 10.3934/dcdsb.2010.13.647

[4]

Eddaly Guerra, Héctor Sánchez-Morgado. Vanishing viscosity limits for space-time periodic Hamilton-Jacobi equations. Communications on Pure and Applied Analysis, 2014, 13 (1) : 331-346. doi: 10.3934/cpaa.2014.13.331

[5]

Emeric Bouin. A Hamilton-Jacobi approach for front propagation in kinetic equations. Kinetic and Related Models, 2015, 8 (2) : 255-280. doi: 10.3934/krm.2015.8.255

[6]

Thi Tuyen Nguyen. Large time behavior of solutions of local and nonlocal nondegenerate Hamilton-Jacobi equations with Ornstein-Uhlenbeck operator. Communications on Pure and Applied Analysis, 2019, 18 (3) : 999-1021. doi: 10.3934/cpaa.2019049

[7]

Olivier Ley, Erwin Topp, Miguel Yangari. Some results for the large time behavior of Hamilton-Jacobi equations with Caputo time derivative. Discrete and Continuous Dynamical Systems, 2021, 41 (8) : 3555-3577. doi: 10.3934/dcds.2021007

[8]

Olga Bernardi, Franco Cardin. Minimax and viscosity solutions of Hamilton-Jacobi equations in the convex case. Communications on Pure and Applied Analysis, 2006, 5 (4) : 793-812. doi: 10.3934/cpaa.2006.5.793

[9]

Kaizhi Wang, Jun Yan. Lipschitz dependence of viscosity solutions of Hamilton-Jacobi equations with respect to the parameter. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1649-1659. doi: 10.3934/dcds.2016.36.1649

[10]

Morteza Fotouhi, Mohsen Yousefnezhad. Homogenization of a locally periodic time-dependent domain. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1669-1695. doi: 10.3934/cpaa.2020061

[11]

Isabeau Birindelli, J. Wigniolle. Homogenization of Hamilton-Jacobi equations in the Heisenberg group. Communications on Pure and Applied Analysis, 2003, 2 (4) : 461-479. doi: 10.3934/cpaa.2003.2.461

[12]

Xia Li. Long-time asymptotic solutions of convex hamilton-jacobi equations depending on unknown functions. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5151-5162. doi: 10.3934/dcds.2017223

[13]

Kai Zhao, Wei Cheng. On the vanishing contact structure for viscosity solutions of contact type Hamilton-Jacobi equations I: Cauchy problem. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4345-4358. doi: 10.3934/dcds.2019176

[14]

Cui Chen, Jiahui Hong, Kai Zhao. Global propagation of singularities for discounted Hamilton-Jacobi equations. Discrete and Continuous Dynamical Systems, 2022, 42 (4) : 1949-1970. doi: 10.3934/dcds.2021179

[15]

Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure and Applied Analysis, 2021, 20 (3) : 995-1023. doi: 10.3934/cpaa.2021003

[16]

Joan-Andreu Lázaro-Camí, Juan-Pablo Ortega. The stochastic Hamilton-Jacobi equation. Journal of Geometric Mechanics, 2009, 1 (3) : 295-315. doi: 10.3934/jgm.2009.1.295

[17]

Nicolas Forcadel, Mamdouh Zaydan. A comparison principle for Hamilton-Jacobi equation with moving in time boundary. Evolution Equations and Control Theory, 2019, 8 (3) : 543-565. doi: 10.3934/eect.2019026

[18]

Mohamed Assellaou, Olivier Bokanowski, Hasnaa Zidani. Error estimates for second order Hamilton-Jacobi-Bellman equations. Approximation of probabilistic reachable sets. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 3933-3964. doi: 10.3934/dcds.2015.35.3933

[19]

Olga Bernardi, Franco Cardin. On $C^0$-variational solutions for Hamilton-Jacobi equations. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 385-406. doi: 10.3934/dcds.2011.31.385

[20]

Gui-Qiang Chen, Bo Su. Discontinuous solutions for Hamilton-Jacobi equations: Uniqueness and regularity. Discrete and Continuous Dynamical Systems, 2003, 9 (1) : 167-192. doi: 10.3934/dcds.2003.9.167

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (196)
  • HTML views (117)
  • Cited by (0)

[Back to Top]