• Previous Article
    One-dimensional, non-local, first-order stationary mean-field games with congestion: A Fourier approach
  • DCDS-S Home
  • This Issue
  • Next Article
    Large time average of reachable sets and Applications to Homogenization of interfaces moving with oscillatory spatio-temporal velocity
October  2018, 11(5): 941-961. doi: 10.3934/dcdss.2018056

A projection method for the computation of admissible measure valued solutions of the incompressible Euler equations

ETH Zurich, Seminar for Applied Mathematics, Department of Mathematics, HG J 45, Rämistrasse 101, 8092 Zurich, Switzerland

Received  February 2017 Revised  June 2017 Published  June 2018

Fund Project: This work is supported by a grant from the Swiss National Supercomputing Centre (CSCS) under project s590 and by ERC StG NN 306279 SPARCCLE.

We formulate a fully discrete finite difference numerical method to approximate the incompressible Euler equations and prove that the sequence generated by the scheme converges to an admissible measure valued solution. The scheme combines an energy conservative flux with a velocity-projection temporal splitting in order to efficiently decouple the advection from the pressure gradient. With the use of robust Monte Carlo approximations, statistical quantities of the approximate solution can be computed. We present numerical results that agree with the theoretical findings obtained for the scheme.

Citation: Leonardi Filippo. A projection method for the computation of admissible measure valued solutions of the incompressible Euler equations. Discrete and Continuous Dynamical Systems - S, 2018, 11 (5) : 941-961. doi: 10.3934/dcdss.2018056
References:
[1]

A. S. AlmgrenJ. B. Bell and W. G. Szymczak, A numerical method for the incompressible navier--stokes equations based on an approximate projection, SIAM J. Sci. Comput., 17 (1996), 358-369.  doi: 10.1137/S1064827593244213.

[2]

H. Bahouri, J. -Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, vol. 343 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7.

[3]

S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith and H. Zhang, PETSc Users Manual, Technical Report ANL-95/11 - Revision 3.4, Argonne National Laboratory, 2013.

[4]

S. Balay, W. D. Gropp, L. C. McInnes and B. F. Smith, Efficient management of parallelism in object oriented numerical software libraries, in Modern Software Tools in Scientific Computing (eds. E. Arge, A. M. Bruaset and H. P. Langtangen), Birkhäuser Press, 1997, 163-202. doi: 10.1007/978-1-4612-1986-6_8.

[5]

C. Bardos and E. Tadmor, Stability and spectral convergence of Fourier method for nonlinear problems: on the shortcomings of the 2/3 de-aliasing method, Numerische Mathematik, 129 (2015), 749-782.  doi: 10.1007/s00211-014-0652-y.

[6]

J. B. BellP. Colella and H. M. Glaz, A second-order projection method for the incompressible navier-stokes equations, Journal of Computational Physics, 85 (1989), 257-283.  doi: 10.1016/0021-9991(89)90151-4.

[7]

Y. Brenier, C. D. Lellis and L. Székelyhidi Jr, Weak-strong uniqueness for measure-valued solutions, 2009, arXiv: 0912.1028v1.

[8]

D. Chae, The vanishing viscosity limit of statistical solutions of the Navier-Stokes equations. Ⅱ. The general case, Journal of Mathematical Analysis and Applications, 155 (1991), 460-484.  doi: 10.1016/0022-247X(91)90013-P.

[9]

A. J. Chorin, Numerical solution of the Navier-Stokes Equations, Math. Comp., 22 (1968), 745-762.  doi: 10.1090/S0025-5718-1968-0242392-2.

[10]

J.-M. Delort, Existence de mappes de tourbillon en dimension deux, Journal of the American Mathematical Society, 4 (1991), 553-586.  doi: 10.1090/S0894-0347-1991-1102579-6.

[11]

R. J. DiPerna, Measure valued solutions to conservation laws, Arch. Rational Mech. Anal., 88 (1985), 223-270.  doi: 10.1007/BF00752112.

[12]

R. J. Diperna and A. Majda, Reduced hausdorff dimension and concentration-cancellation for two dimensional incompressible flow, Journal of the American Mathematical Society, 1 (1988), 59-95.  doi: 10.2307/1990967.

[13]

R. J. DiPerna and A. J. Majda, Concentrations in regularizations for 2-D incompressible flow, Communications on Pure and Applied Mathematics, 40 (1987), 301-345.  doi: 10.1002/cpa.3160400304.

[14]

R. J. DiPerna and A. J. Majda, Oscillations and concentrations in weak solutions of the incompressible fluid equations, Communications in Mathematical Physics, 108 (1987), 667-689.  doi: 10.1007/BF01214424.

[15]

U. S. Fjordholm, R. Käppeli, S. Mishra and E. Tadmor, Construction of approximate entropy measure valued solutions for hyperbolic systems of conservation laws, Found. Comput. Math., 17 (2017), 763-827, arXiv: 1402.0909. doi: MR3648106.

[16]

U. S. FjordholmS. Mishra and E. Tadmor, On the computation of measure-valued solutions, Acta Numerica, 25 (2016), 567-679.  doi: 10.1017/S0962492916000088.

[17]

V. Girault and P. -A. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms Springer Series in Computational Mathematics, 5. Springer-Verlag, Berlin, 1986. doi: 10.1007/978-3-642-61623-5.

[18]

R. Glowinski, Finite element methods for incompressible viscous flow, Handbook of numerical analysis, 9 (2003), 3-1176. 

[19]

A. Krzhivitski and O. A. Ladyzhenskaya, A grid method for the Navier-Stokes equations, Soviet Physics Dokl., 11 (1966), 212-213. 

[20]

S. Lanthaler and S. Mishra, Computation of measure-valued solutions for the incompressible Euler equations, 2014, Math. Models Methods Appl. Sci. , 25 (2015), 2043-2088, arXiv: 1411.5064v1. doi: MR3368268.

[21]

C. Lellis and L. Székelyhidi, On admissibility criteria for weak solutions of the euler equations, Archive for Rational Mechanics and Analysis, 195 (2009), 225-260.  doi: 10.1007/s00205-008-0201-x.

[22]

M. C. Lopes FilhoJ. LowengrubH. J. Nussenzveig Lopes and Y. Zheng, Numerical evidence of nonuniqueness in the evolution of vortex sheets, ESAIM: Mathematical Modelling and Numerical Analysis-Modélisation Mathématique et Analyse Numérique, 40 (2006), 225-237. 

[23]

A. Majda and A. Bertozzi, Vorticity and Incompressible Flow, Cambridge Texts in Applied Mathematics, Cambridge University Press, 2002.

[24]

V. Scheffer, An inviscid flow with compact support in space-time, The Journal of Geometric Analysis, 3 (1993), 343-401.  doi: 10.1007/BF02921318.

[25]

A. Shnirelman, On the nonuniqueness of weak solution of the Euler equation, Communications on Pure and Applied Mathematics, 50 (1997), 1261-1286.  doi: 10.1002/(SICI)1097-0312(199712)50:12<1261::AID-CPA3>3.0.CO;2-6.

[26]

L. Tartar, Compensated compactness and applications to partial differential equations, in Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. Ⅳ, vol. 39 of Res. Notes in Math., Pitman, Boston, Mass. -London, 1979, 136-212.

[27]

V. Yudovich, Non-stationary flow of an ideal incompressible liquid, USSR Computational Mathematics and Mathematical Physics, 3 (1963), 1032-1456. 

show all references

References:
[1]

A. S. AlmgrenJ. B. Bell and W. G. Szymczak, A numerical method for the incompressible navier--stokes equations based on an approximate projection, SIAM J. Sci. Comput., 17 (1996), 358-369.  doi: 10.1137/S1064827593244213.

[2]

H. Bahouri, J. -Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, vol. 343 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7.

[3]

S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith and H. Zhang, PETSc Users Manual, Technical Report ANL-95/11 - Revision 3.4, Argonne National Laboratory, 2013.

[4]

S. Balay, W. D. Gropp, L. C. McInnes and B. F. Smith, Efficient management of parallelism in object oriented numerical software libraries, in Modern Software Tools in Scientific Computing (eds. E. Arge, A. M. Bruaset and H. P. Langtangen), Birkhäuser Press, 1997, 163-202. doi: 10.1007/978-1-4612-1986-6_8.

[5]

C. Bardos and E. Tadmor, Stability and spectral convergence of Fourier method for nonlinear problems: on the shortcomings of the 2/3 de-aliasing method, Numerische Mathematik, 129 (2015), 749-782.  doi: 10.1007/s00211-014-0652-y.

[6]

J. B. BellP. Colella and H. M. Glaz, A second-order projection method for the incompressible navier-stokes equations, Journal of Computational Physics, 85 (1989), 257-283.  doi: 10.1016/0021-9991(89)90151-4.

[7]

Y. Brenier, C. D. Lellis and L. Székelyhidi Jr, Weak-strong uniqueness for measure-valued solutions, 2009, arXiv: 0912.1028v1.

[8]

D. Chae, The vanishing viscosity limit of statistical solutions of the Navier-Stokes equations. Ⅱ. The general case, Journal of Mathematical Analysis and Applications, 155 (1991), 460-484.  doi: 10.1016/0022-247X(91)90013-P.

[9]

A. J. Chorin, Numerical solution of the Navier-Stokes Equations, Math. Comp., 22 (1968), 745-762.  doi: 10.1090/S0025-5718-1968-0242392-2.

[10]

J.-M. Delort, Existence de mappes de tourbillon en dimension deux, Journal of the American Mathematical Society, 4 (1991), 553-586.  doi: 10.1090/S0894-0347-1991-1102579-6.

[11]

R. J. DiPerna, Measure valued solutions to conservation laws, Arch. Rational Mech. Anal., 88 (1985), 223-270.  doi: 10.1007/BF00752112.

[12]

R. J. Diperna and A. Majda, Reduced hausdorff dimension and concentration-cancellation for two dimensional incompressible flow, Journal of the American Mathematical Society, 1 (1988), 59-95.  doi: 10.2307/1990967.

[13]

R. J. DiPerna and A. J. Majda, Concentrations in regularizations for 2-D incompressible flow, Communications on Pure and Applied Mathematics, 40 (1987), 301-345.  doi: 10.1002/cpa.3160400304.

[14]

R. J. DiPerna and A. J. Majda, Oscillations and concentrations in weak solutions of the incompressible fluid equations, Communications in Mathematical Physics, 108 (1987), 667-689.  doi: 10.1007/BF01214424.

[15]

U. S. Fjordholm, R. Käppeli, S. Mishra and E. Tadmor, Construction of approximate entropy measure valued solutions for hyperbolic systems of conservation laws, Found. Comput. Math., 17 (2017), 763-827, arXiv: 1402.0909. doi: MR3648106.

[16]

U. S. FjordholmS. Mishra and E. Tadmor, On the computation of measure-valued solutions, Acta Numerica, 25 (2016), 567-679.  doi: 10.1017/S0962492916000088.

[17]

V. Girault and P. -A. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms Springer Series in Computational Mathematics, 5. Springer-Verlag, Berlin, 1986. doi: 10.1007/978-3-642-61623-5.

[18]

R. Glowinski, Finite element methods for incompressible viscous flow, Handbook of numerical analysis, 9 (2003), 3-1176. 

[19]

A. Krzhivitski and O. A. Ladyzhenskaya, A grid method for the Navier-Stokes equations, Soviet Physics Dokl., 11 (1966), 212-213. 

[20]

S. Lanthaler and S. Mishra, Computation of measure-valued solutions for the incompressible Euler equations, 2014, Math. Models Methods Appl. Sci. , 25 (2015), 2043-2088, arXiv: 1411.5064v1. doi: MR3368268.

[21]

C. Lellis and L. Székelyhidi, On admissibility criteria for weak solutions of the euler equations, Archive for Rational Mechanics and Analysis, 195 (2009), 225-260.  doi: 10.1007/s00205-008-0201-x.

[22]

M. C. Lopes FilhoJ. LowengrubH. J. Nussenzveig Lopes and Y. Zheng, Numerical evidence of nonuniqueness in the evolution of vortex sheets, ESAIM: Mathematical Modelling and Numerical Analysis-Modélisation Mathématique et Analyse Numérique, 40 (2006), 225-237. 

[23]

A. Majda and A. Bertozzi, Vorticity and Incompressible Flow, Cambridge Texts in Applied Mathematics, Cambridge University Press, 2002.

[24]

V. Scheffer, An inviscid flow with compact support in space-time, The Journal of Geometric Analysis, 3 (1993), 343-401.  doi: 10.1007/BF02921318.

[25]

A. Shnirelman, On the nonuniqueness of weak solution of the Euler equation, Communications on Pure and Applied Mathematics, 50 (1997), 1261-1286.  doi: 10.1002/(SICI)1097-0312(199712)50:12<1261::AID-CPA3>3.0.CO;2-6.

[26]

L. Tartar, Compensated compactness and applications to partial differential equations, in Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. Ⅳ, vol. 39 of Res. Notes in Math., Pitman, Boston, Mass. -London, 1979, 136-212.

[27]

V. Yudovich, Non-stationary flow of an ideal incompressible liquid, USSR Computational Mathematics and Mathematical Physics, 3 (1963), 1032-1456. 

Figure 1.  Color map of mean and variance of the vorticity at time $T = 1$ for two different perturbation sizes $\delta$
Figure 2.  $L^2$-norm of the error of the mean and variance of the velocity at time $T = 1$ with different values of $\delta$, for the vortex-patch initial data w.r.t. to a reference solution with $\delta = 10e-5$
Figure 3.  Histograms of the vorticity at the point $(0.8,0.8$) and final time $T = 1$ for the perturbed vortex patch
Figure 4.  Color map of the mean and the variance of both components of the velocity $\mathbf{u}$, for different values of $\delta$ at time $T = 1$, for a fixed mathcal{G} resolution of $512 \times 1024$
Figure 5.  $L^2$-error of the mean and variance for the perturbed vortex-sheet (with root mean square error) as the perturbation size $\delta$ goes to zero. The error is computed against a reference perturbation of size $\delta = 10e-4$
Figure 6.  Histograms for the shear-layer at the point $p = (0.5,0.5)$ for the first component of the velocity and for different perturbation sizes (from $\delta = 0.0016$ to $0.0128$) at the time $T = 1$
[1]

Dominic Breit, Eduard Feireisl, Martina Hofmanová. Generalized solutions to models of inviscid fluids. Discrete and Continuous Dynamical Systems - B, 2020, 25 (10) : 3831-3842. doi: 10.3934/dcdsb.2020079

[2]

Eduard Feireisl, Antonin Novotny, Yongzhong Sun. Dissipative solutions and the incompressible inviscid limits of the compressible magnetohydrodynamic system in unbounded domains. Discrete and Continuous Dynamical Systems, 2014, 34 (1) : 121-143. doi: 10.3934/dcds.2014.34.121

[3]

Ammari Zied, Liard Quentin. On uniqueness of measure-valued solutions to Liouville's equation of Hamiltonian PDEs. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 723-748. doi: 10.3934/dcds.2018032

[4]

Cleopatra Christoforou, Myrto Galanopoulou, Athanasios E. Tzavaras. Measure-valued solutions for the equations of polyconvex adiabatic thermoelasticity. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6175-6206. doi: 10.3934/dcds.2019269

[5]

Simona Fornaro, Stefano Lisini, Giuseppe Savaré, Giuseppe Toscani. Measure valued solutions of sub-linear diffusion equations with a drift term. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1675-1707. doi: 10.3934/dcds.2012.32.1675

[6]

Maria Michaela Porzio, Flavia Smarrazzo, Alberto Tesei. Radon measure-valued solutions of unsteady filtration equations. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022040

[7]

Scott W. Hansen, Andrei A. Lyashenko. Exact controllability of a beam in an incompressible inviscid fluid. Discrete and Continuous Dynamical Systems, 1997, 3 (1) : 59-78. doi: 10.3934/dcds.1997.3.59

[8]

I. D. Chueshov. Interaction of an elastic plate with a linearized inviscid incompressible fluid. Communications on Pure and Applied Analysis, 2014, 13 (5) : 1759-1778. doi: 10.3934/cpaa.2014.13.1759

[9]

Daoyuan Fang, Ting Zhang, Ruizhao Zi. Dispersive effects of the incompressible viscoelastic fluids. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 5261-5295. doi: 10.3934/dcds.2018233

[10]

Young-Pil Choi, Seung-Yeal Ha, Seok-Bae Yun. Global existence and asymptotic behavior of measure valued solutions to the kinetic Kuramoto--Daido model with inertia. Networks and Heterogeneous Media, 2013, 8 (4) : 943-968. doi: 10.3934/nhm.2013.8.943

[11]

Michiel Bertsch, Flavia Smarrazzo, Andrea Terracina, Alberto Tesei. Signed Radon measure-valued solutions of flux saturated scalar conservation laws. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3143-3169. doi: 10.3934/dcds.2020041

[12]

Azmy S. Ackleh, Vinodh K. Chellamuthu, Kazufumi Ito. Finite difference approximations for measure-valued solutions of a hierarchically size-structured population model. Mathematical Biosciences & Engineering, 2015, 12 (2) : 233-258. doi: 10.3934/mbe.2015.12.233

[13]

Van-Sang Ngo, Stefano Scrobogna. Dispersive effects of weakly compressible and fast rotating inviscid fluids. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 749-789. doi: 10.3934/dcds.2018033

[14]

Jitraj Saha, Nilima Das, Jitendra Kumar, Andreas Bück. Numerical solutions for multidimensional fragmentation problems using finite volume methods. Kinetic and Related Models, 2019, 12 (1) : 79-103. doi: 10.3934/krm.2019004

[15]

Miroslav Bulíček, Eduard Feireisl, Josef Málek, Roman Shvydkoy. On the motion of incompressible inhomogeneous Euler-Korteweg fluids. Discrete and Continuous Dynamical Systems - S, 2010, 3 (3) : 497-515. doi: 10.3934/dcdss.2010.3.497

[16]

Jing Wang, Feng Xie. On the Rayleigh-Taylor instability for the compressible non-isentropic inviscid fluids with a free interface. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2767-2784. doi: 10.3934/dcdsb.2016072

[17]

Nicolas Crouseilles, Mohammed Lemou, SV Raghurama Rao, Ankit Ruhi, Muddu Sekhar. Asymptotic preserving scheme for a kinetic model describing incompressible fluids. Kinetic and Related Models, 2016, 9 (1) : 51-74. doi: 10.3934/krm.2016.9.51

[18]

Colette Guillopé, Zaynab Salloum, Raafat Talhouk. Regular flows of weakly compressible viscoelastic fluids and the incompressible limit. Discrete and Continuous Dynamical Systems - B, 2010, 14 (3) : 1001-1028. doi: 10.3934/dcdsb.2010.14.1001

[19]

Pitágoras Pinheiro de Carvalho, Juan Límaco, Denilson Menezes, Yuri Thamsten. Local null controllability of a class of non-Newtonian incompressible viscous fluids. Evolution Equations and Control Theory, 2021  doi: 10.3934/eect.2021043

[20]

Tomáš Roubíček. From quasi-incompressible to semi-compressible fluids. Discrete and Continuous Dynamical Systems - S, 2021, 14 (11) : 4069-4092. doi: 10.3934/dcdss.2020414

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (217)
  • HTML views (124)
  • Cited by (0)

Other articles
by authors

[Back to Top]