
-
Previous Article
Optimal control of non-autonomous SEIRS models with vaccination and treatment
- DCDS-S Home
- This Issue
-
Next Article
First-order partial differential equations and consumer theory
Equilibrium locus of the flow on circular networks of cells
Depart. of Applied Mathematics, Holon Institute of Technology, Holon, Israel |
We perform a geometric study of the equilibrium locus of the flow that models the diffusion process over a circular network of cells. We prove that when considering the set of all possible values of the parameters, the equilibrium locus is a smooth manifold with corners, while for a given value of the parameters, it is an embedded smooth and connected curve. For different values of the parameters, the curves are all isomorphic.
Moreover, we show how to build a homotopy between different curves obtained for different values of the parameter set. This procedure allows the efficient computation of the equilibrium point for each value of some first integral of the system. This point would have been otherwise difficult to be computed for higher dimensions. We illustrate this construction by some numerical experiments.
Eventually, we show that when considering the parameters as inputs, one can easily bring the system asymptotically to any equilibrium point in the reachable set, which we also easily characterize.
References:
[1] |
C. Ehresmann,
Les connexions infinitésimales dans un espace fibré différentiable, Colloque de Topologie, Bruxelles 1950, Paris, (1951), 29-55.
|
[2] |
D. Lazard and F. Rouillier,
Solving parametric polynomial systems, Journal of Symbolic Computations, 42 (2007), 636-667.
doi: 10.1016/j.jsc.2007.01.007. |
[3] |
J. Lee, Introduction to Smooth Manifolds, 2$^{nd}$, Springer, 2013. |
[4] |
T. Y. Li,
Numerical solution of multivariate polynomial systems by homotopy continuation methods, Acta Numerica, 6 (1997), 399-436.
doi: 10.1017/S0962492900002749. |
[5] |
J. Mather,
Notes on topological stability, Bulletin of the American Mathematical Society, 49 (2012), 475-506.
doi: 10.1090/S0273-0979-2012-01383-6. |
[6] |
A. Raveh, Y. Zarai, M. Margaliot and T. Ruller,
Ribosome flow model on a ring, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 12 (2015), 1429-1439.
doi: 10.1109/TCBB.2015.2418782. |
show all references
References:
[1] |
C. Ehresmann,
Les connexions infinitésimales dans un espace fibré différentiable, Colloque de Topologie, Bruxelles 1950, Paris, (1951), 29-55.
|
[2] |
D. Lazard and F. Rouillier,
Solving parametric polynomial systems, Journal of Symbolic Computations, 42 (2007), 636-667.
doi: 10.1016/j.jsc.2007.01.007. |
[3] |
J. Lee, Introduction to Smooth Manifolds, 2$^{nd}$, Springer, 2013. |
[4] |
T. Y. Li,
Numerical solution of multivariate polynomial systems by homotopy continuation methods, Acta Numerica, 6 (1997), 399-436.
doi: 10.1017/S0962492900002749. |
[5] |
J. Mather,
Notes on topological stability, Bulletin of the American Mathematical Society, 49 (2012), 475-506.
doi: 10.1090/S0273-0979-2012-01383-6. |
[6] |
A. Raveh, Y. Zarai, M. Margaliot and T. Ruller,
Ribosome flow model on a ring, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 12 (2015), 1429-1439.
doi: 10.1109/TCBB.2015.2418782. |

[1] |
Xiaoqi Wei, Guo-Wei Wei. Homotopy continuation for the spectra of persistent Laplacians. Foundations of Data Science, 2021, 3 (4) : 677-700. doi: 10.3934/fods.2021017 |
[2] |
Xiaona Fan, Li Jiang, Mengsi Li. Homotopy method for solving generalized Nash equilibrium problem with equality and inequality constraints. Journal of Industrial and Management Optimization, 2019, 15 (4) : 1795-1807. doi: 10.3934/jimo.2018123 |
[3] |
Chunyang Zhang, Shugong Zhang, Qinghuai Liu. Homotopy method for a class of multiobjective optimization problems with equilibrium constraints. Journal of Industrial and Management Optimization, 2017, 13 (1) : 81-92. doi: 10.3934/jimo.2016005 |
[4] |
Ouayl Chadli, Hicham Mahdioui, Jen-Chih Yao. Bilevel mixed equilibrium problems in Banach spaces : existence and algorithmic aspects. Numerical Algebra, Control and Optimization, 2011, 1 (3) : 549-561. doi: 10.3934/naco.2011.1.549 |
[5] |
Abdul Rahim Khan, Chinedu Izuchukwu, Maggie Aphane, Godwin Chidi Ugwunnadi. Modified inertial algorithm for solving mixed equilibrium problems in Hadamard spaces. Numerical Algebra, Control and Optimization, 2021 doi: 10.3934/naco.2021039 |
[6] |
Thorsten Hüls. Computing stable hierarchies of fiber bundles. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3341-3367. doi: 10.3934/dcdsb.2017140 |
[7] |
Mauro Patrão, Luiz A. B. San Martin. Morse decomposition of semiflows on fiber bundles. Discrete and Continuous Dynamical Systems, 2007, 17 (3) : 561-587. doi: 10.3934/dcds.2007.17.561 |
[8] |
Ouayl Chadli, Gayatri Pany, Ram N. Mohapatra. Existence and iterative approximation method for solving mixed equilibrium problem under generalized monotonicity in Banach spaces. Numerical Algebra, Control and Optimization, 2020, 10 (1) : 75-92. doi: 10.3934/naco.2019034 |
[9] |
Guillermo Dávila-Rascón, Yuri Vorobiev. Hamiltonian structures for projectable dynamics on symplectic fiber bundles. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 1077-1088. doi: 10.3934/dcds.2013.33.1077 |
[10] |
Oliver Butterley, Carlangelo Liverani. Robustly invariant sets in fiber contracting bundle flows. Journal of Modern Dynamics, 2013, 7 (2) : 255-267. doi: 10.3934/jmd.2013.7.255 |
[11] |
David W. Pravica, Michael J. Spurr. Analytic continuation into the future. Conference Publications, 2003, 2003 (Special) : 709-716. doi: 10.3934/proc.2003.2003.709 |
[12] |
Wolf-Jürgen Beyn, Thorsten Hüls. Continuation and collapse of homoclinic tangles. Journal of Computational Dynamics, 2014, 1 (1) : 71-109. doi: 10.3934/jcd.2014.1.71 |
[13] |
Christian Pötzsche. Nonautonomous continuation of bounded solutions. Communications on Pure and Applied Analysis, 2011, 10 (3) : 937-961. doi: 10.3934/cpaa.2011.10.937 |
[14] |
Victoria Sadovskaya. Fiber bunching and cohomology for Banach cocycles over hyperbolic systems. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4959-4972. doi: 10.3934/dcds.2017213 |
[15] |
A. Daducci, A. Marigonda, G. Orlandi, R. Posenato. Neuronal Fiber--tracking via optimal mass transportation. Communications on Pure and Applied Analysis, 2012, 11 (5) : 2157-2177. doi: 10.3934/cpaa.2012.11.2157 |
[16] |
Guillermo H. Goldsztein. Bound on the yield set of fiber reinforced composites subjected to antiplane shear. Discrete and Continuous Dynamical Systems - B, 2011, 15 (2) : 391-400. doi: 10.3934/dcdsb.2011.15.391 |
[17] |
Michael Herty, Axel Klar, Sébastien Motsch, Ferdinand Olawsky. A smooth model for fiber lay-down processes and its diffusion approximations. Kinetic and Related Models, 2009, 2 (3) : 489-502. doi: 10.3934/krm.2009.2.489 |
[18] |
Kathryn Haymaker, Beth Malmskog, Gretchen L. Matthews. Locally recoverable codes with availability t≥2 from fiber products of curves. Advances in Mathematics of Communications, 2018, 12 (2) : 317-336. doi: 10.3934/amc.2018020 |
[19] |
José G. Llorente. Mean value properties and unique continuation. Communications on Pure and Applied Analysis, 2015, 14 (1) : 185-199. doi: 10.3934/cpaa.2015.14.185 |
[20] |
Jean-Baptiste Caillau, Bilel Daoud, Joseph Gergaud. Discrete and differential homotopy in circular restricted three-body control. Conference Publications, 2011, 2011 (Special) : 229-239. doi: 10.3934/proc.2011.2011.229 |
2021 Impact Factor: 1.865
Tools
Metrics
Other articles
by authors
[Back to Top]