In the framework of the Laplacian transport, described by a Robin boundary value problem in an exterior domain in $\mathbb{R}^n$ , we generalize the definition of the Poincaré-Steklov operator to $d$ -set boundaries, $n-2< d<n$ , and give its spectral properties to compare to the spectra of the interior domain and also of a truncated domain, considered as an approximation of the exterior case. The well-posedness of the Robin boundary value problems for the truncated and exterior domains is given in the general framework of $n$ -sets. The results are obtained thanks to a generalization of the continuity and compactness properties of the trace and extension operators in Sobolev, Lebesgue and Besov spaces, in particular, by a generalization of the classical Rellich-Kondrachov Theorem of compact embeddings for $n$ and $d$ -sets.
Citation: |
Figure 1.
Example of the considered domains:
[1] |
R. A. Adams,
Sobolev Spaces, Academic Press, New York, 1975.
![]() ![]() |
[2] |
G. Allaire,
Analyse Numérique et Optimisation,
École Polytechnique, 2012.
![]() |
[3] |
W. Arendt and A. F. M. T. Elst, Sectorial forms and degenerate differential operators, J. Operator Theory, 67 (2012), 33-72.
![]() ![]() |
[4] |
W. Arendt and R. Mazzeo, Spectral properties of the Dirichlet-to-Neumann operator on Lipschitz domains, Ulmer Seminare, 12 (2007), 28-38.
![]() |
[5] |
W. Arendt and R. Mazzeo, Friedlander's eigenvalue inequalities and the Dirichlet-to-Neumann semigroup, Commun. Pure Appl. Anal., 11 (2012), 2201-2212.
doi: 10.3934/cpaa.2012.11.2201.![]() ![]() ![]() |
[6] |
W. Arendt and A. ter Elst, The Dirichlet-to-Neumann operator on rough domains, J. Differential Equations, 251 (2011), 2100-2124.
doi: 10.1016/j.jde.2011.06.017.![]() ![]() ![]() |
[7] |
W. Arendt and A. F. M. ter Elst, The Dirichlet-to-Neumann operator on exterior domains, Potential Anal., 43 (2015), 313-340.
doi: 10.1007/s11118-015-9473-6.![]() ![]() ![]() |
[8] |
L. Banjai, Eigenfrequencies of fractal drums, J. of Comp. and Appl. Math., 198 (2007), 1-18.
doi: 10.1016/j.cam.2005.11.015.![]() ![]() ![]() |
[9] |
J. Behrndt and A. ter Elst, Dirichlet-to-Neumann maps on bounded Lipschitz domains, J. Differential Equations, 259 (2015), 5903-5926.
doi: 10.1016/j.jde.2015.07.012.![]() ![]() ![]() |
[10] |
M. Bodin,
Characterisations of Function Spaces on Fractals, Ph. D thesis, Ume$ \mathbb{R} aa$ University, 2005.
![]() |
[11] |
C. Bardos, D. Grebenkov and A. Rozanova-Pierrat, Short-time heat diffusion in compact domains with discontinuous transmission boundary conditions, Math. Models Methods Appl. Sci., 26 (2016), 59-110.
doi: 10.1142/S0218202516500032.![]() ![]() ![]() |
[12] |
L. P. Bos and P. D. Milman, Sobolev-Gagliardo-Nirenberg and Markov type inequalities on subanalytic domains, Geom. Funct. Anal., 5 (1995), 853-923.
doi: 10.1007/BF01902214.![]() ![]() ![]() |
[13] |
A.-P. Calderon, Lebesgue spaces of differentiable functions and distributions, Proc. Symp. Pure Math., 4 (1961), 33-49.
![]() ![]() |
[14] |
R. Capitanelli, Mixed Dirichlet-Robin problems in irregular domains, Comm. to SIMAI Congress, 2 (2007).
![]() |
[15] |
R. Capitanelli, Asymptotics for mixed Dirichlet-Robin problems in irregular domains, J. Math. Anal. Appl., 362 (2010), 450-459.
doi: 10.1016/j.jmaa.2009.09.042.![]() ![]() ![]() |
[16] |
L. C. Evans,
Partial Differential Equations, American Mathematical Society, Providence, RI, 1998.
![]() ![]() |
[17] |
M. Filoche and D. S. Grebenkov, The toposcopy, a new tool to probe the geometry of an irregular interface by measuring its transfer impedance, Europhys. Lett., 81 (2008), 40008.
doi: 10.1209/0295-5075/81/40008.![]() ![]() |
[18] |
A. Girouard, R. S. Laugesen and B. A. Siudeja, Steklov eigenvalues and quasiconformal maps of simply connected planar domains, Arch. Ration. Mech. Anal., 219 (2016), 903-936.
doi: 10.1007/s00205-015-0912-8.![]() ![]() ![]() |
[19] |
A. Girouard, L. Parnovski, I. Polterovich and D. A. Sher, The Steklov spectrum of surfaces: asymptotics and invariants, Math. Proc. Cambridge Philos. Soc., 157 (2014), 379-389.
doi: 10.1017/S030500411400036X.![]() ![]() ![]() |
[20] |
A. Girouard and I. Polterovich, Spectral geometry of the Steklov problem, Shape Optimization and Spectral Theory, 120C148, De Gruyter Open, Warsaw, 2017., arXiv: 1411.6567.
![]() ![]() |
[21] |
D. S. Grebenkov,
Transport Laplacien Aux Interfaces Irregulires: Étude Théorique, Numérique et Expérimentale, Ph. D thesis, Ecole Polytechnique, 2004.
![]() |
[22] |
D. S. Grebenkov, M. Filoche and B. Sapoval, Mathematical basis for a general theory of Laplacian transport towards irregular interfaces,
Phys. Rev. E, 73(2006), 021103, 9pp.
doi: 10.1103/PhysRevE.73.021103.![]() ![]() ![]() |
[23] |
D. S. Grebenkov, M. Filoche and B. Sapoval, A simplified analytical model for Laplacian transfer across deterministic prefractal interfaces, Fractals, 15 (2007), 27-39.
doi: 10.1142/S0218348X0700340X.![]() ![]() ![]() |
[24] |
P. Hajlasz, P. Koskela and H. Tuominen, Sobolev embeddings, extensions and measure density condition, Journal of Functional Analysis, 254 (2008), 1217-1234.
doi: 10.1016/j.jfa.2007.11.020.![]() ![]() ![]() |
[25] |
D. A. Herron and P. Koskela, Uniform, Sobolev extension and quasiconformal circle domains, J. Anal. Math., 57 (1991), 172-202.
doi: 10.1007/BF03041069.![]() ![]() ![]() |
[26] |
L. Ihnatsyeva and A. V. Vähäkangas, Characterization of traces of smooth functions on Ahlfors regular sets, J. Funct. Anal., 265 (2013), 1870–1915, arXiv: 1109.2248v1.
doi: 10.1016/j.jfa.2013.07.006.![]() ![]() ![]() |
[27] |
P. W. Jones, Quasiconformal mappings and extendability of functions in Sobolev spaces, Acta Mathematica, 147 (1981), 71-88.
doi: 10.1007/BF02392869.![]() ![]() ![]() |
[28] |
A. Jonsson, P. Sjögren and H. Wallin, Hardy and Lipschitz spaces on subsets of $ \mathbb{R}^n$, Studia Math., 80 (1984), 141-166.
doi: 10.4064/sm-80-2-141-166.![]() ![]() ![]() |
[29] |
A. Jonsson and H. Wallin, Function spaces on subsets of $ \mathbb{R}^n$,
Math. Rep., 2(1984), xiv+221 pp.
![]() ![]() |
[30] |
A. Jonsson and H. Wallin, The dual of Besov spaces on fractals, Studia Mathematica, 112 (1995), 285-300.
doi: 10.4064/sm-112-3-285-300.![]() ![]() ![]() |
[31] |
A. Jonsson and H. Wallin, Boundary value problems and brownian motion on fractals, Chaos, Solitons & Fractals, 8 (1997), 191-205.
doi: 10.1016/S0960-0779(96)00048-3.![]() ![]() ![]() |
[32] |
M. R. Lancia, A transmission problem with a fractal interface, Zeitschrift für Analysis und ihre Anwendungen, 21 (2002), 113-133.
doi: 10.4171/ZAA/1067.![]() ![]() ![]() |
[33] |
J. Lions and E. Magenes,
Non-Homogeneous Boundary Value Problems and Applications, Vol. 1, Berlin: Springer-Verlag, 1972.
![]() ![]() |
[34] |
G. Lu and B. Ou, A Poincaré inequality on $ \mathbb{R}^n$ and its application to potential fluid flows in space, Comm. Appl. Nonlinear Anal, 12 (2005), 1-24.
![]() ![]() |
[35] |
J. Marschall, The trace of Sobolev-Slobodeckij spaces on Lipschitz domains, Manuscripta Math, 58 (1987), 47-65.
doi: 10.1007/BF01169082.![]() ![]() ![]() |
[36] |
M. Martin and M. Putinar,
Lectures on Hyponormal Operators, Vol. 39, Birkhauser, Basel, 1989.
doi: 10.1007/978-3-0348-7466-3.![]() ![]() ![]() |
[37] |
O. Martio and J. Sarvas, Injectivity theorems in plane and space, Ann. Acad. Sci. Fenn. Ser. A I Math., 4 (1979), 383-401.
doi: 10.5186/aasfm.1978-79.0413.![]() ![]() ![]() |
[38] |
V. N. Maslennikova,
Partial Differential Equations,
(in Russian) Moscow, Peoples Freindship University of Russia, 1997.
![]() |
[39] |
W. McLean,
Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, 2000.
![]() ![]() |
[40] |
J. P. Pinasco and J. D. Rossi, Asymptotics of the spectral function for the Steklov problem in a family of sets with fractal boundaries, Appl. Maths. E-Notes, 5 (2005), 138-146.
![]() ![]() |
[41] |
P. Shvartsman, On the boundary values of Sobolev $ W^1_p$-functions, Adv. in Maths., 225 (2010), 2162-2221.
doi: 10.1016/j.aim.2010.03.031.![]() ![]() ![]() |
[42] |
E. M. Stein,
Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970.
![]() ![]() |
[43] |
M. Taylor,
Partial Differential Equations II, Appl. Math. Sci., Vol. 116, Springer-Verlag, New-York, 1996.
doi: 10.1007/978-1-4684-9320-7.![]() ![]() ![]() |
[44] |
H. Triebel,
Fractals and Spectra. Related to Fourier Analysis and Function Spaces, Birkhäuser, 1997.
doi: 10.1007/978-3-0348-0034-1.![]() ![]() ![]() |
[45] |
H. Wallin, The trace to the boundary of Sobolev spaces on a snowflake, Manuscripta Math, 73 (1991), 117-125.
doi: 10.1007/BF02567633.![]() ![]() ![]() |
[46] |
P. Wingren, Lipschitz spaces and interpolating polynomials on subsets of euclidean space, Function Spaces and Applications, Springer Science + Business Media, 1302 (1988), 424–435.
doi: 10.1007/BFb0078893.![]() ![]() ![]() |