The aim of this paper is to prove a reverse Hölder inequality for nonnegative adjoint solutions for elliptic operator in non divergence form in $\mathbb R^3$. As an application we generalize a Theorem due to Sirazhudinov and Zhikov [
$N[v] = \sum\limits_{i,j = 1}^3 {\frac{{{\partial ^2}({a_{ij}}v)}}{{\partial {x_i}\partial {x_j}}}} \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left( 1 \right)$
arises naturally as the formal adjoint of the operator in "non divergence form"
$L[u] = \sum\limits_{i,j = 1}^3 {{a_{i,j}}} (x)\frac{{{\partial ^2}u}}{{\partial {x_i}\partial {x_j}}} = Tr(A{D^2}u).\;\;\;\;\;\;\;\;\;\;\;\;\;\left( 2 \right)$
The reason to study the solutions of the adjoint operator is that they are not only important for the solvability of $Lu = f$ but for the properties of the Green's function for $L$. There is a long literature in this context, see for example Sÿogren [
Citation: |
T. Alberico
, C. Capozzoli
and L. D'Onofrio
, $G$-convergence for non-divergence second order elliptic operators in the plane, Diff. Int. Eq., 26 (2013)
, 1127-1138.
![]() ![]() |
|
P. Bauman
, Positive solutions of elliptic equations in nondivergent form and their adjoints, Ark. Mat., 22 (1984)
, 153-173.
doi: 10.1007/BF02384378.![]() ![]() ![]() |
|
B. Bojarski
, L. D'Onofrio
, T. Iwaniec
and C. Sbordone
, $G$-closed classes of elliptic operators in the complex plane, Ricerche Mat., 54 (2005)
, 403-432.
![]() ![]() |
|
L. Caso
, P. Cavaliere
and M. Transirico
, On the maximum principle for elliptic operators, Math Inequali. Appl., 7 (2004)
, 405-418.
doi: 10.7153/mia-07-41.![]() ![]() ![]() |
|
P. Cavaliere
and M. Transirico
, The Dirichlet problem for elliptic equations in the plane, Comment. Math. Univ. Carolinae, 46 (2005)
, 751-758.
![]() ![]() |
|
P. Cavaliere
and M. Transirico
, A strong Maximum Principle for linear elliptic operators, Int. J. Pure Appl. Math, 57 (2009)
, 299-311.
![]() ![]() |
|
F. Chiarenza
, M. Frasca
and P. Longo
, $W^{2,p}$-solvability of the Dirichlet problem for nondivergence elliptic equations with $VMO$ coefficients, Trans. Amer. Math. Soc., 336 (1993)
, 841-853.
doi: 10.2307/2154379.![]() ![]() ![]() |
|
L. D'Onofrio
and L. Greco
, A counter-example in $G$-convergence of non-divergence elliptic operators, Proc. Roy. Soc. Edinburgh Sect. A, 133 (2003)
, 1299-1310.
doi: 10.1017/S0308210500002948.![]() ![]() ![]() |
|
L. Escauriaza
, Weak type-$(1,1)$ inequalities and regularity properties of adjoint and normalized adjoint solutions to linear nondivergence form operators with VMO coefficients, Duke Math. J., 74 (1994)
, 177-201.
doi: 10.1215/S0012-7094-94-07409-7.![]() ![]() ![]() |
|
L. Escauriaza
and C. Kenig
, Area integral estimates for solutions and normalized adjoint solutions to nondivergence form elliptic equations, Ark. Mat., 31 (1993)
, 275-296.
doi: 10.1007/BF02559487.![]() ![]() ![]() |
|
E. Fabes
, N. Garofalo
, S. Marìn-Malavé
and S. Salsa
, Fatou theorems for some nonlinear elliptic equations, Rev. Mat. Ib., 4 (1988)
, 227-251.
doi: 10.4171/RMI/73.![]() ![]() ![]() |
|
E. Fabes
and D. W. Stroock
, The $L^p$-integrability of Green's functions and fundamental solutions for elliptic and parabolic equations, Duke Math. J., 51 (1984)
, 997-1016.
doi: 10.1215/S0012-7094-84-05145-7.![]() ![]() ![]() |
|
F. Giannetti, L. Kovalev, T. Iwaniec, G. Moscariello and C. Sbordone, On G-compactness
of the Beltrami operators, in Nonlinear Homogenization and its Applications to Composites,
Polycrystals and Smart Materials, NATO Sci. Ser. Ⅱ Math. Phys. Chem. 170, Kluwer Acad.
Publ., Dordrecht, (2004), 107-138.
doi: 10.1007/1-4020-2623-4_5.![]() ![]() ![]() |
|
P. Jones
, Extension theorems for BMO, Indiana Univ, Math. J., 29 (1980)
, 41-66.
doi: 10.1512/iumj.1980.29.29005.![]() ![]() ![]() |
|
G. Moscariello
and C. Sbordone
, Optimal $L^p$-properties of Green's functions for non-divergence elliptic equations in two dimensions, (English summary), Studia Math., 169 (2005)
, 133-141.
doi: 10.4064/sm169-2-3.![]() ![]() ![]() |
|
F. Murat, H-convergence, in "Séminaire d'analyse fonctionnelle et numérique, "Université
d'Alger, 1977 (multicopied, 34 pp.), English translation, F. Murat and L. Tartar, H-convergence, in: L. Cherkaev, R. H. Kohn (Eds.), Topics in the Mathematical Modelling of
Composite Materials, in: Progress in Nonlinear Differential Equations and their Applications,
31, Birkhäauser, Boston, 1997, 21-43.
![]() |
|
F. Murat
, Compacité par compensation, Ann. Scuola Norm. Sup. Pisa, Ser. IV, 5 (1978)
, 489-507.
![]() ![]() |
|
T. Radice
, Regularity result for nondivergence equations with unbounded coefficients, Differential Integral Equations, 23 (2010)
, 989-1000.
![]() ![]() |
|
T. Radice
, A higher-integrability result for nondivergence elliptic equations, Ann. Mat. Pura Appl., 187 (2008)
, 93-103.
doi: 10.1007/s10231-006-0035-9.![]() ![]() ![]() |
|
D. Sarason
, Functions of vanishing mean oscillation, Trans. Amer. Math. Soc., 207 (1975)
, 391-405.
doi: 10.1090/S0002-9947-1975-0377518-3.![]() ![]() ![]() |
|
C. Sbordone
, The precise $L^p$-theory of elliptic equations in the plane, Progr. Nonlinear Differential Equations Appl., 63 (2005)
, 415-421.
doi: 10.1007/3-7643-7384-9_40.![]() ![]() ![]() |
|
P. Sÿogren
, On the adjoint of an elliptic linear differential operator and its potential theory, Ark. Mat., 11 (1973)
, 153-165.
doi: 10.1007/BF02388513.![]() ![]() ![]() |
|
G. Talenti
, Sopra una classe di equazioni ellittiche a coefficienti misurabili, Ann. Mat. Pura Appl., 69 (1965)
, 285-304.
doi: 10.1007/BF02414375.![]() ![]() ![]() |
|
V. V. Zhikov
and M. M. Sirazhudinov
, On $G$-compactness of nondivergence elliptic operators of second order, Math. USSR Izv., 19 (1982)
, 27-40.
![]() |