The aim of this paper is to discuss the existence and multiplicity of solutions for the following fractional $p$-Kirchhoff type problem involving the critical Sobolev exponent and discontinuous nonlinearity:
$\begin{align*}M\left(\displaystyle\iint_{\mathbb{R}^{2N}}\frac{|u(x)-u(y)|^{p}}{|x-y|^{N+sp}}dxdy\right)(-\Delta)_p^su = \lambda|u|^{p_s^*-2}u+f(x,u)~~\mbox{in }\,\,\mathbb{R}^N,\end{align*}$
where $M(t) = a+bt^{\theta-1}$ for $t\geq 0$, $a\geq 0, b>0,\theta>1$, $(-\Delta)_p^s$ is the fractional $p$--Laplacian with $0<s<1$ and $1<p<N/s$, $p_s^* = Np/(N-ps)$ is the critical Sobolev exponent, $\lambda>0$ is a parameter, and $f:\mathbb{R}^N\times\mathbb{R}\rightarrow\mathbb{R}$ is a function. Under suitable assumptions on $f$, we show that there exists $\lambda_0>0$ such that the above equation admits at least one nontrivial nonnegative solution provided $\lambda<\lambda_0$ by using the nonsmooth critical point theory for locally Lipschitz functionals. Furthermore, for any $k\in\mathbb{N}$, there exists $\Lambda_k>0$ such that the above equation has $k$ pairs of nontrivial solutions if $\lambda<\Lambda_k$. The main feature is that our paper covers the degenerate case, that is the coefficient of $(-\Delta)_p^s$ may be zero at zero. Moreover, the existence results are obtained when $f$ is discontinuous. Thus, our results are new even in the semilinear case.
Citation: |
C. O. Alves
and A. M. Bertone
, A discontinuous problem involving the p-Laplacian operator and critical exponent in $\mathbb{R}^N$, Electron. J. Differential Equations, 2003 (2003)
, 1-10.
![]() ![]() |
|
C. O. Alves
, A. M. Bertone
and J. V. Goncalves
, A variational approach to discontinuous problems with critical Sobolev exponents, J. Math. Anal. Appl., 265 (2002)
, 103-127.
doi: 10.1006/jmaa.2001.7698.![]() ![]() ![]() |
|
D. Applebaum
, Lévy processes-from probability to finance quantum groups, Notices Amer. Math. Soc., 51 (2004)
, 1336-1347.
![]() ![]() |
|
G. Autuori
, A. Fiscella
and P. Pucci
, Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity, Nonlinear Anal., 125 (2015)
, 699-714.
doi: 10.1016/j.na.2015.06.014.![]() ![]() ![]() |
|
G. Autuori
and P. Pucci
, Elliptic problems involving the fractional Laplacian in $\mathbb{R}^N$, J. Differential Equations, 255 (2013)
, 2340-2362.
doi: 10.1016/j.jde.2013.06.016.![]() ![]() ![]() |
|
A. Azzollini, A note on the elliptic Kirchhoff equation in $\mathbb{R}^N$ perturbed by a local nonlinearity, Commun. Contemp. Math., 17 (2015), 1450039, 5 pp.
doi: 10.1142/S0219199714500394.![]() ![]() ![]() |
|
B. Barrios
, E. Colorado
, R. Servadei
and F. Soria
, A critical fractional equation with concave-convex power nonlinearities, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015)
, 875-900.
doi: 10.1016/j.anihpc.2014.04.003.![]() ![]() ![]() |
|
L. Brasco, S. Mosconi and M. Squassina, Optimal decay of extremal functions for the fractional Sobolev inequality, Calc. Var. Partial Differentail Equations, 55 (2016), Art. 23, 32 pp.
doi: 10.1007/s00526-016-0958-y.![]() ![]() ![]() |
|
L. Brasco
, E. Parini
and M. Squassina
, Stability of variational eigenvalues for the fractional p-Laplacian, Discrete Contin. Dyn. Syst., 36 (2016)
, 1813-1845.
doi: 10.3934/dcds.2016.36.1813.![]() ![]() ![]() |
|
H. Brézis
and L. Nirenberg
, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983)
, 437-477.
doi: 10.1002/cpa.3160360405.![]() ![]() ![]() |
|
L. Caffarelli
, Non-local diffusions, drifts and games, Nonlinear Partial Differential Equations, Abel Symposia, 7 (2012)
, 37-52.
doi: 10.1007/978-3-642-25361-4_3.![]() ![]() ![]() |
|
M. Caponi
and P. Pucci
, Existence theorems for entire solutions of stationary Kirchhoff fractional p-Laplacian equations, Ann. Mat. Pura Appl., 195 (2016)
, 2099-2129.
doi: 10.1007/s10231-016-0555-x.![]() ![]() ![]() |
|
J. Chabrowski
, On multiple solutions for the non-homogeneous p-Laplacian with a critical Sobolev exponent, Differ. Integral Equations, 8 (1995)
, 705-716.
![]() ![]() |
|
K. C. Chang
, Variational methods for nondifferentiable functionals and their applications to partial differential equations, J. Math. Anal. Appl., 80 (1981)
, 102-129.
doi: 10.1016/0022-247X(81)90095-0.![]() ![]() ![]() |
|
F. H. Clarke
, Generalized gradients and applications, Trans. Amer. Math. Soc., 205 (1975)
, 247-262.
doi: 10.1090/S0002-9947-1975-0367131-6.![]() ![]() ![]() |
|
A. Cotsiolis
and N. K. Tavoularis
, Best constants for Sobolev inequalities for higher order fractional derivatives, J. Math. Anal. Appl., 295 (2004)
, 225-236.
doi: 10.1016/j.jmaa.2004.03.034.![]() ![]() ![]() |
|
E. Di Nezza
, G. Palatucci
and E. Valdinoci
, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012)
, 521-573.
doi: 10.1016/j.bulsci.2011.12.004.![]() ![]() ![]() |
|
L. D'Onofrio
, A. Fiscella
and G. Molica Bisci
, Perturbation methods for nonlocal Kirchhofftype problems, Fractional Calculus and Applied Analysis, 20 (2017)
, 829-853.
doi: 10.1515/fca-2017-0044.![]() ![]() ![]() |
|
G. M. Figueiredo
, Existence of a positive solution for a Kirchhoff problem type with critical growth via truncation argument, J. Math. Anal. Appl., 401 (2013)
, 706-713.
doi: 10.1016/j.jmaa.2012.12.053.![]() ![]() ![]() |
|
A. Fiscella
and E. Valdinoci
, A critical Kirchhoff type problem involving a nonlocal operator, Nonliear Anal., 94 (2014)
, 156-170.
doi: 10.1016/j.na.2013.08.011.![]() ![]() ![]() |
|
A. Fiscella
and P. Pucci
, p-fractional Kirchhoff equations involving critical nonlinearities, Nonlinear Anal. Real World Appl., 35 (2017)
, 350-378.
doi: 10.1016/j.nonrwa.2016.11.004.![]() ![]() ![]() |
|
A. Fiscella
, Infinitely many solutions for a critical Kirchhoff type problem involving a fractional operator, Differ. Integral Equations, 29 (2016)
, 513-530.
![]() ![]() |
|
L. Gasiński and N. S. Papageorgiou, Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems, Chapman and Hall/CRC, Boca Raton, 2005.
![]() ![]() |
|
J. V. Goncalves
and C. O. Alves
, Existence of positive solutions for m-Laplacian equations in $\mathbb{R}^N$ involving critical exponents, Nonlinear Anal., 32 (1998)
, 53-70.
doi: 10.1016/S0362-546X(97)00452-5.![]() ![]() ![]() |
|
Y. He
, G. B. Li
and S. J. Peng
, Concentrating bound states for Kirchhoff type problems in $\mathbb{R}^3$ involving critical Sobolev exponents, Adv. Nonlinear Stud., 14 (2014)
, 483-510.
doi: 10.1515/ans-2014-0214.![]() ![]() ![]() |
|
X. M. He
and W. M. Zou
, Ground states for nonlinear Kirchhoff equations with critical growth, Ann. Mat. Pura Appl., 193 (2014)
, 473-500.
doi: 10.1007/s10231-012-0286-6.![]() ![]() ![]() |
|
N. Laskin
, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268 (2000)
, 298-305.
doi: 10.1016/S0375-9601(00)00201-2.![]() ![]() ![]() |
|
S. H. Liang
and S. Y. Shi
, Soliton solutions to Kirchhoff type problems involving the critical growth in $\mathbb{R}^N$, Nonlinear Anal., 81 (2013)
, 31-41.
doi: 10.1016/j.na.2012.12.003.![]() ![]() ![]() |
|
P. L. Lions, The concentration-compactness principle in the calculus of variations, the limit case, Part Ⅰ, Rev. Mat. Iberoam., 1 (1985), 145–201. [Erratum in Part Ⅱ, Rev. Mat. Iberoam, 1 (1985), 45–121].
doi: 10.4171/RMI/6.![]() ![]() ![]() |
|
J. Liu
, J. F. Liao
and C. L. Tang
, Positive solutions for Kirchhoff-type equations with critical exponent in $\mathbb{R}^N$, J. Math. Anal. Appl., 429 (2015)
, 1153-1172.
doi: 10.1016/j.jmaa.2015.04.066.![]() ![]() ![]() |
|
J. Mawhin and M. Willem, Critical Point Theory and Hamilton Systems, Springer Verlag, Berlin, 1989.
doi: 10.1007/978-1-4757-2061-7.![]() ![]() ![]() |
|
X. Mingqi
, G. Molica Bisci
, G. Tian
and B. L. Zhang
, Infinitely many solutions for the stationary Kirchhoff problems involving the fractional p-Laplacian, Nonlinearity, 29 (2016)
, 357-374.
doi: 10.1088/0951-7715/29/2/357.![]() ![]() ![]() |
|
G. Molica Bisci, V. Rădulescu and R. Servadei, Variational Methods for Nonlocal Fractional Equations, Encyclopedia of Mathematics and its Applications, 162, Cambridge University Press, Cambridge, 2016.
doi: 10.1017/CBO9781316282397.![]() ![]() ![]() |
|
G. Molica Bisci
and D. Repovš
, Higher nonlocal problems with bounded potential, J. Math. Anal. Appl., 420 (2014)
, 167-176.
doi: 10.1016/j.jmaa.2014.05.073.![]() ![]() ![]() |
|
G. Molica Bisci
and V. Rădulescu
, Ground state solutions of scalar field fractional for Schrödinger equations, Calc. Var. Partial Differential Equations, 54 (2015)
, 2985-3008.
doi: 10.1007/s00526-015-0891-5.![]() ![]() ![]() |
|
S. Mosconi, K. Perera, M. Squassina and Y. Yang, The Br´ezis-Nirenberg problem for the fractional p–Laplacian, Calc. Var. Partial Differential Equations, 55 (2016), Art. 105, 25 pp.
doi: 10.1007/s00526-016-1035-2.![]() ![]() ![]() |
|
A. Ourraoui
, On a p-Kirchhoff problem involving a critical nonlinearity, C. R. Math. Acad. Sci. Paris Ser. I, 352 (2014)
, 295-298.
doi: 10.1016/j.crma.2014.01.015.![]() ![]() ![]() |
|
G. Palatucci
and A. Pisante
, Improved Sobolev embeddings, profle decomposition, and concentration compactness for fractional Sobolev spaces, Calc. Var. Partial Differential Equations, 50 (2014)
, 799-829.
doi: 10.1007/s00526-013-0656-y.![]() ![]() ![]() |
|
P. Piersanti
and P. Pucci
, Entire solutions for critical p-fractional Hardy Schrödinger Kirchhoff equations, Publ. Mat., 62 (2018)
, 3-36.
doi: 10.5565/PUBLMAT6211801.![]() ![]() ![]() |
|
P. Pucci
and S. Saldi
, Critical stationary Kirchhoff equations in $\mathbb{R}^N$ involving nonlocal operators, Rev. Mat. Iberoam, 32 (2016)
, 1-22.
doi: 10.4171/RMI/879.![]() ![]() ![]() |
|
P. Pucci
, M. Q. Xiang
and B. L. Zhang
, Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff type equations involving the fractional p-Laplacian in $\mathbb{R}^N$, Calc. Var. Partial Differential Equations, 54 (2015)
, 2785-2806.
doi: 10.1007/s00526-015-0883-5.![]() ![]() ![]() |
|
P. Pucci
, M. Q. Xiang
and B. L. Zhang
, Existence and multiplicity of entire solutions for fractional p-Kirchhoff equations, Adv. Nonlinear Anal., 5 (2016)
, 27-55.
doi: 10.1515/anona-2015-0102.![]() ![]() ![]() |
|
X. Ros-Oston
and J. Serra
, Nonexistence results for nonlocal equations with critical and supercritical nonlinearities, Comm. Partial Differential Equations, 40 (2015)
, 115-133.
doi: 10.1080/03605302.2014.918144.![]() ![]() ![]() |
|
R. Servadei
and E. Valdinoci
, Fractional Laplacian equations with critical Sobolev exponent, Revista Matemática Complutense, 28 (2015)
, 655-676.
doi: 10.1007/s13163-015-0170-1.![]() ![]() ![]() |
|
X. D. Shang
, Existence and multiplicity of solutions for a discontinuous problems with critical Sobolev exponents, J. Math. Anal. Appl., 385 (2012)
, 1033-1043.
doi: 10.1016/j.jmaa.2011.07.029.![]() ![]() ![]() |
|
F. L. Wang
and M. Q. Xiang
, Multiplicity of solutions to a nonlocal Choquard equation involving fractional magnetic operators and critical exponent, Electron. J. Differential Equations, 2016 (2016)
, 1-11.
![]() ![]() |
|
M. Q. Xiang
, B. L. Zhang
and M. Ferrara
, Existence of solutions for Kirchhoff type problem involving the non-local fractional p-Laplacian, J. Math. Anal. Appl., 424 (2015)
, 1021-1041.
doi: 10.1016/j.jmaa.2014.11.055.![]() ![]() ![]() |
|
M. Q. Xiang, B. L. Zhang and M. Ferrara, Multiplicity results for the nonhomogeneous fractional p–Kirchhoff equations with concave-convex nonlinearities, Proc. Roy. Soc. A, 471 (2015), 20150034, 14 pp.
doi: 10.1098/rspa.2015.0034.![]() ![]() ![]() |
|
M. Q. Xiang
, B. L. Zhang
and V. Rădulescu
, Existence of solutions for perturbed fractional p-Laplacian equations, J. Differential Equations, 260 (2016)
, 1392-1413.
doi: 10.1016/j.jde.2015.09.028.![]() ![]() ![]() |
|
M. Q. Xiang
, B. L. Zhang
and X. Zhang
, A nonhomogeneous fractional p-Kirchhoff type problem involving critical exponent in $\mathbb{R}^N$, Adv. Nonlinear Stud., 17 (2017)
, 611-640.
doi: 10.1515/ans-2016-6002.![]() ![]() ![]() |