\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Professor Vicenţiu Rǎdulescu celebrates his sixtieth anniversary

Abstract Full Text(HTML) Related Papers Cited by
  • Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  •   S. Dumont , L. Dupaigne , O. Goubet  and  V. D. Rǎdulescu , Back to the Keller-Osserman condition for boundary blow-up solutions, Adv. Nonlinear Stud., 7 (2007) , 271-298.  doi: 10.1515/ans-2007-0205.
      L. Dupaigne , M. Ghergu  and  V. D. Rǎdulescu , Lane-Emden-Fowler equations with convection and singular potential, J. Math. Pures Appl., 87 (2007) , 563-581.  doi: 10.1016/j.matpur.2007.03.002.
      R. Filippucci , P. Pucci  and  V. D. Rǎdulescu , Existence and non-existence results for quasilinear elliptic exterior problems with nonlinear boundary conditions, Comm. Partial Differential Equations, 33 (2008) , 706-717.  doi: 10.1080/03605300701518208.
      M. Ghergu  and  V.D. Rǎdulescu , Sublinear singular elliptic problems with two parameters, J. Differential Equations, 195 (2003) , 520-536.  doi: 10.1016/S0022-0396(03)00105-0.
      M. Ghergu  and  V. D. Rǎdulescu , Multiparameter bifurcation and asymptotics for the singular Lane-Emden-Fowler equation with a convection term, Proc. Roy. Soc. Edinburgh Sect. A, 135 (2005) , 61-83.  doi: 10.1017/S0308210500003760.
      M. Ghergu  and  V. D. Rǎdulescu , A singular Gierer-Meinhardt system with different source terms, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008) , 1215-1234.  doi: 10.1017/S0308210507000637.
      M. Ghergu and V. D. Rǎdulescu, Singular Elliptic Problems: Bifurcation and Asymptotic Analysis. Oxford Lecture Series in Mathematics and its Applications, The Clarendon Press, Oxford University Press, Oxford, 2008. ⅹⅵ+298 pp.
      M. Ghergu and V. D. Rǎdulescu, Nonlinear PDEs. Mathematical Models in Biology, Chemistry and Population Genetics, Springer Monographs in Mathematics. Springer, Heidelberg, 2012. ⅹⅷ+391 pp. doi: 10.1007/978-3-642-22664-9.
      A. Kristàly, V. D. Rǎdulescu and C. Varga, Variational Principles in Mathematical Physics, Geometry, and Economics. Qualitative Analysis of Nonlinear Equations and Unilateral Problems, Encyclopedia of Mathematics and its Applications, 136. Cambridge University Press, Cambridge, 2010. ⅹⅵ+368 pp. doi: 10.1017/CBO9780511760631.
      G. Molica-Bisci, V. D. Rǎdulescu and R. Servadei, Variational Methods for Nonlocal Fractional Problems, Cambridge University Press, Cambridge, 2016. ⅹⅵ+383 pp. doi: 10.1017/CBO9781316282397.
      G. Molica Bisci  and  V. D. Rǎdulescu , Ground state solutions of scalar field fractional Schrödinger equations, Calc. Var. Partial Differential Equations, 54 (2015) , 2985-3008.  doi: 10.1007/s00526-015-0891-5.
      G. Molica Bisci  and  V. D. Rǎdulescu , A sharp eigenvalue theorem for fractional elliptic equations, Israel Journal of Mathematics, 219 (2017) , 331-351.  doi: 10.1007/s11856-017-1482-2.
      D. Motreanu and V. D. Rǎdulescu, Variational and Non-Variational Methods in Nonlinear Analysis and Boundary Value Problems. Nonconvex Optimization and its Applications, Kluwer Academic Publishers, Dordrecht, 2003. ⅹⅱ+375 pp. doi: 10.1007/978-1-4757-6921-0.
      N. S. Papageorgiou  and  V. D. Rǎdulescu , Multiple solutions with precise sign for nonlinear parametric Robin problems, J. Differential Equations, 256 (2014) , 2449-2479.  doi: 10.1016/j.jde.2014.01.010.
      N. S. Papageorgiou  and  V. D. Rǎdulescu , Multiplicity of solutions for resonant Neumann problems with an indefinite and unbounded potential, Trans. Amer. Math. Soc., 367 (2015) , 8723-8756.  doi: 10.1090/S0002-9947-2014-06518-5.
      N. S. Papageorgiou  and  V. D. Rǎdulescu , Multiplicity theorems for nonlinear nonhomogeneous Robin problems, Rev. Mat. Iberoam., 33 (2017) , 251-289.  doi: 10.4171/RMI/936.
      N. S. Papageorgiou, V. D. Rǎdulescu and D. D. Repovš, Multiple solutions for resonant problems of the Robin p-Laplacian plus an indefinite potential, Calc. Var. Partial Differential Equations, 56 (2017), Art. 63, 23 pp. doi: 10.1007/s00526-017-1164-2.
      N. S. Papageorgiou , V. D. Rǎdulescu  and  D. D. Repovš , Robin problems with a general potential and a superlinear reaction, J. Differential Equations, 263 (2017) , 3244-3290.  doi: 10.1016/j.jde.2017.04.032.
      N. S. Papageorgiou, V. D. Rǎdulescu and D. D. Repovš, Modern Nonlinear Analysis: Theory and Applications, Springer Monographs in Mathematics, Springer-Verlag, Heidelberg, 2018 (in press).
      P. Pucci  and  V. D. Rǎdulescu , Remarks on a polyharmonic eigenvalue problem, C. R. Math. Acad. Sci. Paris, 348 (2010) , 161-164.  doi: 10.1016/j.crma.2010.01.013.
      P. Pucci  and  V. D. Rǎdulescu , The impact of the mountain pass theory in nonlinear analysis: A mathematical survey., Boll. Unione Mat. Ital., 3 (2010) , 543-582. 
      P. Pucci  and  V. D. Rǎdulescu , Combined effects in quasilinear elliptic problems with lack of compactness, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 22 (2011) , 189-205.  doi: 10.4171/RLM/595.
      P. Pucci, V. D. Rǎdulescu and H. Weinberger, James Serrin. Selected Papers, 2 volumes, 1718 pages, Contemporary Mathematicians, Birkhäuser, Basel, 2014.
      V. D. Rǎdulescu, Analyse de quelques problèmes liés à l'équation de Ginzburg-Landau, PhD Thesis, 29 June 1995, https://www.theses.fr/1995PA066189.
      V. D. Rǎdulescu, Habilitation à diriger des recherches at the Université Pierre et Marie Curie (Paris Ⅵ) with the mémoire: Analyse de quelques problèmes aux limites elliptiques non linéaires Habilitation à diriger des recherches at the Université Pierre et Marie Curie (Paris Ⅵ), 18 February 2003.
      V. D. Rǎdulescu, Qualitative Analysis of Nonlinear Elliptic Partial Differential Equations: Monotonicity, Analytic, and Variational Methods, Contemporary Mathematics and Its Applications, 6. Hindawi Publishing Corporation, New York, 2008. ⅹⅱ+192 pp. doi: 10.1155/9789774540394.
      V. D. Rǎdulescu , Nonlinear elliptic equations with variable exponent: old and new, Nonlinear Anal., 121 (2015) , 336-369.  doi: 10.1016/j.na.2014.11.007.
      V. D. Rǎdulescu and D. D. Repovš, Partial Differential Equations with Variable Exponents. Variational Methods and Qualitative Analysis, Monographs and Research Notes in Mathematics. CRC Press, Boca Raton, FL, 2015. xxi+301 pp. doi: 10.1201/b18601.
      V. D. Rǎdulescu , M. Xiang  and  B. Zhang , Existence of solutions for perturbed fractional p-Laplacian equations, J. Differential Equations, 260 (2016) , 1392-1413.  doi: 10.1016/j.jde.2015.09.028.
      V. D. Rǎdulescu , M. Xiang  and  B. Zhang , Multiplicity of solutions for a class of quasilinear Kirchhoff system involving the fractional p-Laplacian, Nonlinearity, 29 (2016) , 3186-3205.  doi: 10.1088/0951-7715/29/10/3186.
      J. Serrin, E. Mitidieri and V. D. Rǎdulescu, Recent Trends in Nonlinear Partial Differential Equations I: Evolution Problems, Contemporary Mathematics, vol. 594, American Mathematical Society, 307 pp., 2013.
      J. Serrin, E. Mitidieri and V. D. Rǎdulescu, Recent Trends in Nonlinear Partial Differential Equations II: Stationary Problems, Contemporary Mathematics, vol. 595, American Mathematical Society, 340 pp., 2013. doi: 10.1090/conm/595.
  • 加载中
Open Access Under a Creative Commons license
SHARE

Article Metrics

HTML views(682) PDF downloads(306) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return