\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Modeling the transmission dynamics of avian influenza with saturation and psychological effect

Abstract Full Text(HTML) Figure(5) Related Papers Cited by
  • The present paper describes the mathematical analysis of an avian influenza model with saturation and psychological effect. The virus of avian influenza is not only a risk for birds but the population of human is also not safe from this. We proposed two models, one for birds and the other one for human. We consider saturated incidence rate and psychological effect in the model. The stability results for each model that is birds and human is investigated. The local and global dynamics for the disease free case of each model is proven when the basic reproduction number $ \mathcal{R}_{0b}<1$ and $ \mathcal{R}_0<1$. Further, the local and global stability of each model is investigated in the case when $ \mathcal{R}_{0b}>1$ and $ \mathcal{R}_0>1$. The mathematical results show that the considered saturation effect in population of birds and psychological effect in population of human does not effect the stability of equilibria, if the disease is prevalent then it can affect the number of infected humans. Numerical results are carried out in order to validate the theoretical results. Some numerical results for the proposed parameters are presented which can reduce the number of infective in the population of humans.

    Mathematics Subject Classification: 92D25, 93D20.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The behavior of infected individuals $I_h$, keeping $\alpha = m = 0.001$. Figure 1(a): varying $\beta_a$ and $\beta_h = 8\times 10^{-7}$ is fixed. Figure 1(b): varying $\beta_h$ and $\beta_a = 3\times 10^{-6}$ is fixed

    Figure 2.  The behavior of infected individuals $I_h$ when $ \mathcal{R}_{0}>1$. Figure 2(a): $\alpha = m = 0$, Figure 2(b): $\alpha = m = 0.001$

    Figure 3.  The behavior of infected individuals $I_h$ and $ \mathcal{R}_{0}>1$: Figure 3(a) when $\alpha = 0.001,~0.001,~0.01 $ and $m = 0.001$ fixed. Figure 3(b) when $m = 0.001,~0.001,~0.01 $ and $\alpha = 0.001$ fixed

    Figure 4.  The behavior of infected individuals $I_h$ and $ \mathcal{R}_{0}<1$: Figure 4(a) when $\alpha = 0.001,~0.001,~0.01 $ and $m = 0.001$ fixed. Figure 3(b) when $m = 0.001,~0.001,~0.01 $ and $\alpha = 0.001$ fixed

    Figure 5.  The behavior of infected individuals $I_h$ and $ \mathcal{R}_{0}<1$: $\alpha = 0.001,~0.01,~0.1$, $m = 0.001,~0.01,~0.1$

  •   Centers for Disease Control and Prevention (CDC), Types of influenza virus, http://www.cdc.gov/?u/about/viruses/types.htm
      Centers for Disease Control and Prevention (CDC), Information on Avian Influenza, http://www.cdc.gov/?u/avian?u/index.htm.
      Centers for Disease Control and Prevention (CDC), Influenza Type A Viruses, http://www.cdc.gov/flu/avianflu/influenza-avirus-subtypes.htm.
      F. B. Agusto , Optimal isolation control strategies and cost-effectiveness analysis of a two-strain avian influenza model, Biosystems, 113 (2013) , 155-164.  doi: 10.1016/j.biosystems.2013.06.004.
      F. B. Agusto , S. Bewick  and  W. F. Fagan , Mathematical model of Zika virus with vertical transmission, Infectious Disease Modelling, 2 (2017) , 244-267.  doi: 10.1016/j.idm.2017.05.003.
      J. D. Alexander , An overview of the epidemiology of avian influenza, Vaccine, 25 (2007) , 5637-5644. 
      B. S. T. Alkahtani , A. Atangana  and  I. Koca , Novel analysis of the fractional Zika model using the Adams type predictor-corrector rule for non-singular and non-local fractional operators, J. Nonlinear Sci. Appl., 10 (2017) , 3191-3200.  doi: 10.22436/jnsa.010.06.32.
      B. S. T. Alkahtani , I. Koca  and  A. Atangana , Analysis of a new model of H1N1 spread: Model obtained via Mittag-Leffler function, Advances in Mechanical Engineering, 9 (2017) , 1-8.  doi: 10.1177/1687814017705566.
      B. S. T. Alkahtani , A. Atangana  and  I. Koca , A new nonlinear triadic model of predatorrey based on derivative with non-local and non-singular kernel, Advances in Mechanical Engineering, 8 (2016) , 1-17. 
      M. R. Anderson, M. M. Robert and B. Anderson, Infectious diseases of humans: Dynamics and control, Oxford: Oxford University Press, 28 (1992).
      A. Atangana and E. Alabaraoye, Solving a system of fractional partial differential equations arising in the model of HIV infection of CD4+ cells and attractor one-dimensional Keller-Segel equations, Advances in Difference Equations, 2013 (2013), 14pp. doi: 10.1186/1687-1847-2013-94.
      A. Atangana  and  B. S. T. Alkahtani , Modeling the spread of Rubella disease using the concept of with local derivative with fractional parameter, Complexity, 21 (2016) , 442-451.  doi: 10.1002/cplx.21704.
      A. Atangana and R. T. Alqahtani, Modelling the spread of river blindness disease via the caputo fractional derivative and the beta-derivative, Entropy, 18 (2016), p40. doi: 10.3390/e18020040.
      C. T. Bauch  and  A. P. Galvani , Social factors in epidemiology, Science, 342 (2013) , 47-49.  doi: 10.1126/science.1244492.
      G. Birkhoff and G. C. Rota, Ordinary differential equations, Introductions to Higher Mathematics Ginn and Company, Boston, Mass.-New York-Toronto, 1962.
      L. Bourouiba, Lydia, et al. , The interaction of migratory birds and domestic poultry and its role in sustaining avian influenza, SIAM Journal on Applied Mathematics, 71 (2011), 487–516. doi: 10.1137/100803110.
      V. Capasso  and  G. Serio , A generalization of the Kermack-McKendrick deterministic epidemic model, Mathematical Biosciences, 42 (1978) , 43-61.  doi: 10.1016/0025-5564(78)90006-8.
      C. Castillo-Chavez, et al, Mathematical approaches for emerging and reemerging infectious diseases: models, methods, and theory, Springer, New York, 2002.
      X. Dongmei  and  S. Ruan , Global analysis of an epidemic model with nonmonotone incidence rate, Mathematical Biosciences, 208 (2007) , 419-429.  doi: 10.1016/j.mbs.2006.09.025.
      P. Van den Driessche  and  J. Watmough , Reproduction number and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Bios, 180 (2002) , 29-48.  doi: 10.1016/S0025-5564(02)00108-6.
      N. Ferguson , Capturing human behaviour, Nature, 446 (2007) , 733-733.  doi: 10.1038/446733a.
      S. A. Gourley , R. Liu  and  J. Wu , Spatiotemporal distributions of migratory birds: Patchy models with delay, SIAM Journal on Applied Dynamical Systems, 9 (2010) , 589-610.  doi: 10.1137/090767261.
      A. B. Gumel , Global dynamics of a two-strain avian influenza model, International Journal of Computer Mathematics, 86 (2009) , 85-108.  doi: 10.1080/00207160701769625.
      H. Guo , M. Y. Li  and  Z. Shuai , A graph-theoretic approach to the method of global Lyapunov functions, Proc. Am. Math. Soc., 136 (2008) , 2793-2802.  doi: 10.1090/S0002-9939-08-09341-6.
      L. Joseph, M. Roy and M. Martcheva, An avian influenza model and its fit to human avian influenza cases, Advances in Disease Epidemiology, Nova Science Publishers, New York, (2009), 1–30.
      E. Jung, et al. Optimal control strategy for prevention of avian influenza pandemic, Journal of Theoretical Biology, 260 (2009), 220–229. doi: 10.1016/j.jtbi.2009.05.031.
      J. M. Keeling and P. Rohani, Modeling Infectious Diseases in Humans and Animals, Princeton University Press, 2008.
      J. P. LaSalle, The Stability of Dynamical Systems, Regional Conference Series in Applied Mathematis, Society for Industrial and Applied Mathematics, Philadelphia, Pa, USA, 1976.
      J. P. LaSalle, The Stability of Dynamical Systems, SIAM, Philadelphia, PA, 1976.
      M.-T. Li , Z. Jin , G. Q. Sun  and  J. Zhang , Modeling direct and indirect disease transmission using multi-group mode, J. Math. Anal. Appl., 446 (2017) , 1292-1309.  doi: 10.1016/j.jmaa.2016.09.043.
      W. Liping, Human Exposure to Live Poultry and Psychological and Behavioral Responses to Influenza A (H7N9), China-Emerging Infectious Disease journal, 20 (2014).
      S. Liu, L. Pang, S. Ruan and X. Zhang, Global dynamics of avian influenza epidemic models with psychological effect, Comp. Math. Meth. Med., (2015), Art. ID 913726, 12 pp. doi: 10.1155/2015/913726.
      W.-M. Liu , A. Levin  and  Y. Iwasa , Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models, Journal of Mathematical Biology, 23 (1986) , 187-204.  doi: 10.1007/BF00276956.
      T. Necibe and M. Martcheva, Modeling seasonality in avian influenza H5N1, Journal of Biological Systems, 21 (2013), 1340004, 30 pp. doi: 10.1142/S0218339013400044.
      X. Nijuan, et al., Knowledge, attitudes and practices (KAP) relating to avian influenza in urban and rural areas of China, BMC Infectious Diseases, 10 (2010), 34.
      K. M. Owolabi  and  A. Atangana , Spatiotemporal dynamics of fractional predatorrey system with stage structure for the predator, International Journal of Applied and Computational Mathematics, 3 (2017) , S903-S924.  doi: 10.1007/s40819-017-0389-2.
      L. Rongsong , J. Wu  and  H. Zhu , Media/psychological impact on multiple outbreaks of emerging infectious diseases, Computational and Mathematical Methods in Medicine, 8 (2007) , 153-164.  doi: 10.1080/17486700701425870.
      F. Sebastian, et al., The spread of awareness and its impact on epidemic outbreaks, Proceedings of the National Academy of Sciences, 106 (2009), 6872–6877.
      F. Sebastian, M. Salathe and V. Jansen, Modelling the influence of human behaviour on the spread of infectious diseases: A review, Journal of the Royal Society Interface, (2010).
      F. Sebastian, et al., Nine challenges in incorporating the dynamics of behaviour in infectious diseases models, Epidemics, 10 (2015), 21–25.
      I. Shingo, et al., A geographical spread of vaccine-resistance in avian influenza epidemics, Journal of Theoretical Biology, 259 (2009), 219–228. doi: 10.1016/j.jtbi.2009.03.040.
      I. Shingo , Y. Takeuchi  and  X. Liu , Avian-human influenza epidemic model, Mathematical Bios., 207 (2007) , 1-25.  doi: 10.1016/j.mbs.2006.08.001.
      I. Shingo , Y. Takeuchi  and  X. Liu , Avian flu pandemic: Can we prevent it?, Journal of Theoretical Biology, 257 (2009) , 181-190.  doi: 10.1016/j.jtbi.2008.11.011.
      R. Shigui  and  W. Wang , Dynamical behavior of an epidemic model with a nonlinear incidence rate, Journal of Differential Equations, 188 (2003) , 135-163.  doi: 10.1016/S0022-0396(02)00089-X.
      O. Sonja, Poultry-handling Practices during Avian Influenza Outbreak, Thailand, Emerging Infectious Disease journal, 11 (2005).
      C. Wolf , A mathematical model for the propagation of a hantavirus in structured populations, Discrete Continuous Dynam. Systems - B, 4 (2004) , 1065-1089.  doi: 10.3934/dcdsb.2004.4.1065.
      M. Xinling  and  W. Wang , A discrete model of avian influenza with seasonal reproduction and transmission, Journal of Biological Dynamics, 4 (2010) , 296-314.  doi: 10.1080/17513751003793009.
      X. Yanni, et al., Transmission potential of the novel avian influenza A (H7N9) infection in mainland China, Journal of Theoretical Biology, 352 (2014), 1–5. doi: 10.1016/j.jtbi.2014.02.038.
      H. Ying-Hen, et al. Quantification of bird-to-bird and bird-to-human infections during 2013 novel H7N9 avian influenza outbreak in China, PloS One, 9 (2014), e111834.
      J. Zhang, et al., Determination of original infection source of H7N9 avian influenza by dynamical model, Scientific Reports, 4 (2014), 48–46. doi: 10.1038/srep04846.
  • 加载中

Figures(5)

SHARE

Article Metrics

HTML views(2743) PDF downloads(1002) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return