# American Institute of Mathematical Sciences

• Previous Article
Numerical analysis of coupled fractional differential equations with Atangana-Baleanu fractional derivative
• DCDS-S Home
• This Issue
• Next Article
New exact solutions for some fractional order differential equations via improved sub-equation method
June  2019, 12(3): 455-474. doi: 10.3934/dcdss.2019030

## Modeling the transmission dynamics of avian influenza with saturation and psychological effect

 1 Department of Mathematics, City University of Science and Information, Technology, Peshawar, KP, 25000, Pakistan 2 Department of Mathematics, Abdul Wali Khan, University Mardan, KP, 23200, Pakistan 3 Department of Information Technology Education, University of Education, Winneba (Kumasi campus), Ghana

* Corresponding author: altafdir@gmail.com, makhan@cusit.edu.pk

Received  July 2017 Revised  November 2017 Published  September 2018

The present paper describes the mathematical analysis of an avian influenza model with saturation and psychological effect. The virus of avian influenza is not only a risk for birds but the population of human is also not safe from this. We proposed two models, one for birds and the other one for human. We consider saturated incidence rate and psychological effect in the model. The stability results for each model that is birds and human is investigated. The local and global dynamics for the disease free case of each model is proven when the basic reproduction number $\mathcal{R}_{0b}<1$ and $\mathcal{R}_0<1$. Further, the local and global stability of each model is investigated in the case when $\mathcal{R}_{0b}>1$ and $\mathcal{R}_0>1$. The mathematical results show that the considered saturation effect in population of birds and psychological effect in population of human does not effect the stability of equilibria, if the disease is prevalent then it can affect the number of infected humans. Numerical results are carried out in order to validate the theoretical results. Some numerical results for the proposed parameters are presented which can reduce the number of infective in the population of humans.

Citation: Muhammad Altaf Khan, Muhammad Farhan, Saeed Islam, Ebenezer Bonyah. Modeling the transmission dynamics of avian influenza with saturation and psychological effect. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 455-474. doi: 10.3934/dcdss.2019030
##### References:

show all references

##### References:
The behavior of infected individuals $I_h$, keeping $\alpha = m = 0.001$. Figure 1(a): varying $\beta_a$ and $\beta_h = 8\times 10^{-7}$ is fixed. Figure 1(b): varying $\beta_h$ and $\beta_a = 3\times 10^{-6}$ is fixed
The behavior of infected individuals $I_h$ when $\mathcal{R}_{0}>1$. Figure 2(a): $\alpha = m = 0$, Figure 2(b): $\alpha = m = 0.001$
The behavior of infected individuals $I_h$ and $\mathcal{R}_{0}>1$: Figure 3(a) when $\alpha = 0.001,~0.001,~0.01$ and $m = 0.001$ fixed. Figure 3(b) when $m = 0.001,~0.001,~0.01$ and $\alpha = 0.001$ fixed
The behavior of infected individuals $I_h$ and $\mathcal{R}_{0}<1$: Figure 4(a) when $\alpha = 0.001,~0.001,~0.01$ and $m = 0.001$ fixed. Figure 3(b) when $m = 0.001,~0.001,~0.01$ and $\alpha = 0.001$ fixed
The behavior of infected individuals $I_h$ and $\mathcal{R}_{0}<1$: $\alpha = 0.001,~0.01,~0.1$, $m = 0.001,~0.01,~0.1$
 [1] Tianhui Yang, Ammar Qarariyah, Qigui Yang. The effect of spatial variables on the basic reproduction ratio for a reaction-diffusion epidemic model. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3005-3017. doi: 10.3934/dcdsb.2021170 [2] Mudassar Imran, Mohamed Ben-Romdhane, Ali R. Ansari, Helmi Temimi. Numerical study of an influenza epidemic dynamical model with diffusion. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : 2761-2787. doi: 10.3934/dcdss.2020168 [3] Hui Cao, Yicang Zhou. The basic reproduction number of discrete SIR and SEIS models with periodic parameters. Discrete and Continuous Dynamical Systems - B, 2013, 18 (1) : 37-56. doi: 10.3934/dcdsb.2013.18.37 [4] Gabriela Marinoschi. Identification of transmission rates and reproduction number in a SARS-CoV-2 epidemic model. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022128 [5] Nicolas Bacaër, Xamxinur Abdurahman, Jianli Ye, Pierre Auger. On the basic reproduction number $R_0$ in sexual activity models for HIV/AIDS epidemics: Example from Yunnan, China. Mathematical Biosciences & Engineering, 2007, 4 (4) : 595-607. doi: 10.3934/mbe.2007.4.595 [6] Nitu Kumari, Sumit Kumar, Sandeep Sharma, Fateh Singh, Rana Parshad. Basic reproduction number estimation and forecasting of COVID-19: A case study of India, Brazil and Peru. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2021170 [7] Gerardo Chowell, R. Fuentes, A. Olea, X. Aguilera, H. Nesse, J. M. Hyman. The basic reproduction number $R_0$ and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1455-1474. doi: 10.3934/mbe.2013.10.1455 [8] Mi-Young Kim. Uniqueness and stability of positive periodic numerical solution of an epidemic model. Discrete and Continuous Dynamical Systems - B, 2007, 7 (2) : 365-375. doi: 10.3934/dcdsb.2007.7.365 [9] Sanjukta Hota, Folashade Agusto, Hem Raj Joshi, Suzanne Lenhart. Optimal control and stability analysis of an epidemic model with education campaign and treatment. Conference Publications, 2015, 2015 (special) : 621-634. doi: 10.3934/proc.2015.0621 [10] Junyuan Yang, Yuming Chen, Jiming Liu. Stability analysis of a two-strain epidemic model on complex networks with latency. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2851-2866. doi: 10.3934/dcdsb.2016076 [11] Praveen Kumar Gupta, Ajoy Dutta. Numerical solution with analysis of HIV/AIDS dynamics model with effect of fusion and cure rate. Numerical Algebra, Control and Optimization, 2019, 9 (4) : 393-399. doi: 10.3934/naco.2019038 [12] Tianhui Yang, Lei Zhang. Remarks on basic reproduction ratios for periodic abstract functional differential equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6771-6782. doi: 10.3934/dcdsb.2019166 [13] Najwa Najib, Norfifah Bachok, Norihan Md Arifin, Fadzilah Md Ali. Stability analysis of stagnation point flow in nanofluid over stretching/shrinking sheet with slip effect using buongiorno's model. Numerical Algebra, Control and Optimization, 2019, 9 (4) : 423-431. doi: 10.3934/naco.2019041 [14] Yancong Xu, Lijun Wei, Xiaoyu Jiang, Zirui Zhu. Complex dynamics of a SIRS epidemic model with the influence of hospital bed number. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6229-6252. doi: 10.3934/dcdsb.2021016 [15] Scott W. Hansen. Controllability of a basic cochlea model. Evolution Equations and Control Theory, 2016, 5 (4) : 475-487. doi: 10.3934/eect.2016015 [16] Jiangshan Wang, Lingxiong Meng, Hongen Jia. Numerical analysis of modular grad-div stability methods for the time-dependent Navier-Stokes/Darcy model. Electronic Research Archive, 2020, 28 (3) : 1191-1205. doi: 10.3934/era.2020065 [17] Meng Zhao, Wantong Li, Yihong Du. The effect of nonlocal reaction in an epidemic model with nonlocal diffusion and free boundaries. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4599-4620. doi: 10.3934/cpaa.2020208 [18] Yachun Tong, Inkyung Ahn, Zhigui Lin. Effect of diffusion in a spatial SIS epidemic model with spontaneous infection. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4045-4057. doi: 10.3934/dcdsb.2020273 [19] Wenbo Cheng, Wanbiao Ma, Songbai Guo. A class of virus dynamic model with inhibitory effect on the growth of uninfected T cells caused by infected T cells and its stability analysis. Communications on Pure and Applied Analysis, 2016, 15 (3) : 795-806. doi: 10.3934/cpaa.2016.15.795 [20] Bing Zeng, Pei Yu. A hierarchical parametric analysis on Hopf bifurcation of an epidemic model. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022069

2020 Impact Factor: 2.425