A nonlinear system of two fractional nonlinear differential equations with Atangana-Baleanu derivative is considered in this work. General conditions under which a system solution exists and unique are presented using the fixed-point theorem method. The well-established numerical scheme is used to solve the system of equations. A numerical analysis is presented to secure the stability and convergence of the used numerical scheme.
Citation: |
A. A. M. Arafa
, S. Z. Rida
and H. Mohamed
, Homotopy analysis method for solving biological population model, Communications in Theoretical Physics, 56 (2011)
, 797-800.
doi: 10.1088/0253-6102/56/5/01.![]() ![]() ![]() |
|
A. Atangana
and D. Baleanu
, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Thermal Science, 20 (2016)
, 763-769.
doi: 10.2298/TSCI160111018A.![]() ![]() |
|
A. Atangana
and I. Koca
, Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, Chaos Solitons Fractals, 89 (2016)
, 447-454.
doi: 10.1016/j.chaos.2016.02.012.![]() ![]() ![]() |
|
A. Atangana
and I. Koca
, On the new fractional derivative and application to Nonlinear Baggs and Freedman model, Journal of Nonlinear Sciences and Applications, 9 (2016)
, 2467-2480.
doi: 10.22436/jnsa.009.05.46.![]() ![]() ![]() |
|
A. Atangana
, On the new fractional derivative and application to nonlinear fisher's reaction-diffusion equation, Appl Math Comput, 273 (2016)
, 948-956.
doi: 10.1016/j.amc.2015.10.021.![]() ![]() ![]() |
|
M. Caputo
and M. Fabrizio
, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015)
, 73-85.
![]() |
|
A. M. A. El-Sayed
, A. Elsaid
, I. L. El-Kalla
and D. Hammad
, A homotopy perturbation technique for solving partial differential equations of fractional order in finite domains, Applied Mathematics and Computation, 218 (2012)
, 8329-8340.
doi: 10.1016/j.amc.2012.01.057.![]() ![]() ![]() |
|
A. K. Golmankhaneh
, A. K. Golmankhaneh
and D. Baleanu
, On nonlinear fractional KleinGordon equation, Signal Processing, 91 (2011)
, 446-451.
![]() |
|
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Science B. V., Amsterdam, 2006.
![]() ![]() |
|
J. Losada
and J. J. Nieto
, Properties of a new fractional derivative without singular kernel, Progr Fract Differ Appl, 1 (2015)
, 87-92.
![]() |
|
I. Podlubny
, Geometric and physical interpretation of fractional integration and fractional differentiation, Fractional Calculus and Applied Analysis, 5 (2002)
, 367-386.
![]() |
|
B. Sambandham
and A. Vatsala
, Basic results for sequential caputo fractional differential equations, Mathematics, 3 (2015)
, 76-91.
![]() |
|
T. Yamamoto
and X. Chen
, An existence and nonexistence theorem for solutions of nonlinear systems and its application to algebraic equations, Journal of Computational and Applied Mathematics, 30 (1990)
, 87-97.
doi: 10.1016/0377-0427(90)90008-N.![]() ![]() ![]() |