# American Institute of Mathematical Sciences

June  2019, 12(3): 475-486. doi: 10.3934/dcdss.2019031

## Numerical analysis of coupled fractional differential equations with Atangana-Baleanu fractional derivative

 Mehmet Akif Ersoy University, Department of Mathematics, Faculty of Sciences, 15100, Burdur, Turkey

Received  June 2017 Revised  September 2017 Published  September 2018

A nonlinear system of two fractional nonlinear differential equations with Atangana-Baleanu derivative is considered in this work. General conditions under which a system solution exists and unique are presented using the fixed-point theorem method. The well-established numerical scheme is used to solve the system of equations. A numerical analysis is presented to secure the stability and convergence of the used numerical scheme.

Citation: Ilknur Koca. Numerical analysis of coupled fractional differential equations with Atangana-Baleanu fractional derivative. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 475-486. doi: 10.3934/dcdss.2019031
##### References:
 [1] A. A. M. Arafa, S. Z. Rida and H. Mohamed, Homotopy analysis method for solving biological population model, Communications in Theoretical Physics, 56 (2011), 797-800.  doi: 10.1088/0253-6102/56/5/01. [2] A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Thermal Science, 20 (2016), 763-769.  doi: 10.2298/TSCI160111018A. [3] A. Atangana and I. Koca, Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, Chaos Solitons Fractals, 89 (2016), 447-454.  doi: 10.1016/j.chaos.2016.02.012. [4] A. Atangana and I. Koca, On the new fractional derivative and application to Nonlinear Baggs and Freedman model, Journal of Nonlinear Sciences and Applications, 9 (2016), 2467-2480.  doi: 10.22436/jnsa.009.05.46. [5] A. Atangana, On the new fractional derivative and application to nonlinear fisher's reaction-diffusion equation, Appl Math Comput, 273 (2016), 948-956.  doi: 10.1016/j.amc.2015.10.021. [6] M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73-85. [7] A. M. A. El-Sayed, A. Elsaid, I. L. El-Kalla and D. Hammad, A homotopy perturbation technique for solving partial differential equations of fractional order in finite domains, Applied Mathematics and Computation, 218 (2012), 8329-8340.  doi: 10.1016/j.amc.2012.01.057. [8] A. K. Golmankhaneh, A. K. Golmankhaneh and D. Baleanu, On nonlinear fractional KleinGordon equation, Signal Processing, 91 (2011), 446-451. [9] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Science B. V., Amsterdam, 2006. [10] J. Losada and J. J. Nieto, Properties of a new fractional derivative without singular kernel, Progr Fract Differ Appl, 1 (2015), 87-92. [11] I. Podlubny, Geometric and physical interpretation of fractional integration and fractional differentiation, Fractional Calculus and Applied Analysis, 5 (2002), 367-386. [12] B. Sambandham and A. Vatsala, Basic results for sequential caputo fractional differential equations, Mathematics, 3 (2015), 76-91. [13] T. Yamamoto and X. Chen, An existence and nonexistence theorem for solutions of nonlinear systems and its application to algebraic equations, Journal of Computational and Applied Mathematics, 30 (1990), 87-97.  doi: 10.1016/0377-0427(90)90008-N.

show all references

##### References:
 [1] A. A. M. Arafa, S. Z. Rida and H. Mohamed, Homotopy analysis method for solving biological population model, Communications in Theoretical Physics, 56 (2011), 797-800.  doi: 10.1088/0253-6102/56/5/01. [2] A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Thermal Science, 20 (2016), 763-769.  doi: 10.2298/TSCI160111018A. [3] A. Atangana and I. Koca, Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, Chaos Solitons Fractals, 89 (2016), 447-454.  doi: 10.1016/j.chaos.2016.02.012. [4] A. Atangana and I. Koca, On the new fractional derivative and application to Nonlinear Baggs and Freedman model, Journal of Nonlinear Sciences and Applications, 9 (2016), 2467-2480.  doi: 10.22436/jnsa.009.05.46. [5] A. Atangana, On the new fractional derivative and application to nonlinear fisher's reaction-diffusion equation, Appl Math Comput, 273 (2016), 948-956.  doi: 10.1016/j.amc.2015.10.021. [6] M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73-85. [7] A. M. A. El-Sayed, A. Elsaid, I. L. El-Kalla and D. Hammad, A homotopy perturbation technique for solving partial differential equations of fractional order in finite domains, Applied Mathematics and Computation, 218 (2012), 8329-8340.  doi: 10.1016/j.amc.2012.01.057. [8] A. K. Golmankhaneh, A. K. Golmankhaneh and D. Baleanu, On nonlinear fractional KleinGordon equation, Signal Processing, 91 (2011), 446-451. [9] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Science B. V., Amsterdam, 2006. [10] J. Losada and J. J. Nieto, Properties of a new fractional derivative without singular kernel, Progr Fract Differ Appl, 1 (2015), 87-92. [11] I. Podlubny, Geometric and physical interpretation of fractional integration and fractional differentiation, Fractional Calculus and Applied Analysis, 5 (2002), 367-386. [12] B. Sambandham and A. Vatsala, Basic results for sequential caputo fractional differential equations, Mathematics, 3 (2015), 76-91. [13] T. Yamamoto and X. Chen, An existence and nonexistence theorem for solutions of nonlinear systems and its application to algebraic equations, Journal of Computational and Applied Mathematics, 30 (1990), 87-97.  doi: 10.1016/0377-0427(90)90008-N.
 [1] Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Ebraheem O. Alzahrani. A fractional model for the dynamics of tuberculosis (TB) using Atangana-Baleanu derivative. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 937-956. doi: 10.3934/dcdss.2020055 [2] Kashif Ali Abro, Ilyas Khan. MHD flow of fractional Newtonian fluid embedded in a porous medium via Atangana-Baleanu fractional derivatives. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 377-387. doi: 10.3934/dcdss.2020021 [3] Editorial Office. WITHDRAWN: Fractional diffusion equation described by the Atangana-Baleanu fractional derivative and its approximate solution. Discrete and Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2020173 [4] Muhammad Bilal Riaz, Syed Tauseef Saeed. Comprehensive analysis of integer-order, Caputo-Fabrizio (CF) and Atangana-Baleanu (ABC) fractional time derivative for MHD Oldroyd-B fluid with slip effect and time dependent boundary condition. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3719-3746. doi: 10.3934/dcdss.2020430 [5] S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3747-3761. doi: 10.3934/dcdss.2020435 [6] G. M. Bahaa. Generalized variational calculus in terms of multi-parameters involving Atangana-Baleanu's derivatives and application. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 485-501. doi: 10.3934/dcdss.2020027 [7] César E. Torres Ledesma. Existence and concentration of solutions for a non-linear fractional Schrödinger equation with steep potential well. Communications on Pure and Applied Analysis, 2016, 15 (2) : 535-547. doi: 10.3934/cpaa.2016.15.535 [8] Rajesh Kumar, Jitendra Kumar, Gerald Warnecke. Convergence analysis of a finite volume scheme for solving non-linear aggregation-breakage population balance equations. Kinetic and Related Models, 2014, 7 (4) : 713-737. doi: 10.3934/krm.2014.7.713 [9] Olusola Kolebaje, Ebenezer Bonyah, Lateef Mustapha. The first integral method for two fractional non-linear biological models. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 487-502. doi: 10.3934/dcdss.2019032 [10] Eugenio Aulisa, Akif Ibragimov, Emine Yasemen Kaya-Cekin. Stability analysis of non-linear plates coupled with Darcy flows. Evolution Equations and Control Theory, 2013, 2 (2) : 193-232. doi: 10.3934/eect.2013.2.193 [11] Hamza Khalfi, Amal Aarab, Nour Eddine Alaa. Energetics and coarsening analysis of a simplified non-linear surface growth model. Discrete and Continuous Dynamical Systems - S, 2022, 15 (1) : 161-177. doi: 10.3934/dcdss.2021014 [12] Tommi Brander, Joonas Ilmavirta, Manas Kar. Superconductive and insulating inclusions for linear and non-linear conductivity equations. Inverse Problems and Imaging, 2018, 12 (1) : 91-123. doi: 10.3934/ipi.2018004 [13] Seda İğret Araz. New class of volterra integro-differential equations with fractal-fractional operators: Existence, uniqueness and numerical scheme. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2297-2309. doi: 10.3934/dcdss.2021053 [14] Priscila Santos Ramos, J. Vanterler da C. Sousa, E. Capelas de Oliveira. Existence and uniqueness of mild solutions for quasi-linear fractional integro-differential equations. Evolution Equations and Control Theory, 2022, 11 (1) : 1-24. doi: 10.3934/eect.2020100 [15] Pablo Ochoa. Approximation schemes for non-linear second order equations on the Heisenberg group. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1841-1863. doi: 10.3934/cpaa.2015.14.1841 [16] Tarek Saanouni. Non-linear bi-harmonic Choquard equations. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5033-5057. doi: 10.3934/cpaa.2020221 [17] Christoph Walker. Age-dependent equations with non-linear diffusion. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 691-712. doi: 10.3934/dcds.2010.26.691 [18] Daniele Garrisi, Vladimir Georgiev. Orbital stability and uniqueness of the ground state for the non-linear Schrödinger equation in dimension one. Discrete and Continuous Dynamical Systems, 2017, 37 (8) : 4309-4328. doi: 10.3934/dcds.2017184 [19] Franca Franchi, Barbara Lazzari, Roberta Nibbi. Uniqueness and stability results for non-linear Johnson-Segalman viscoelasticity and related models. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 2111-2132. doi: 10.3934/dcdsb.2014.19.2111 [20] Simona Fornaro, Ugo Gianazza. Local properties of non-negative solutions to some doubly non-linear degenerate parabolic equations. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 481-492. doi: 10.3934/dcds.2010.26.481

2020 Impact Factor: 2.425