-
Previous Article
The first integral method for two fractional non-linear biological models
- DCDS-S Home
- This Issue
-
Next Article
Modeling the transmission dynamics of avian influenza with saturation and psychological effect
Numerical analysis of coupled fractional differential equations with Atangana-Baleanu fractional derivative
Mehmet Akif Ersoy University, Department of Mathematics, Faculty of Sciences, 15100, Burdur, Turkey |
A nonlinear system of two fractional nonlinear differential equations with Atangana-Baleanu derivative is considered in this work. General conditions under which a system solution exists and unique are presented using the fixed-point theorem method. The well-established numerical scheme is used to solve the system of equations. A numerical analysis is presented to secure the stability and convergence of the used numerical scheme.
References:
[1] |
A. A. M. Arafa, S. Z. Rida and H. Mohamed,
Homotopy analysis method for solving biological population model, Communications in Theoretical Physics, 56 (2011), 797-800.
doi: 10.1088/0253-6102/56/5/01. |
[2] |
A. Atangana and D. Baleanu,
New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Thermal Science, 20 (2016), 763-769.
doi: 10.2298/TSCI160111018A. |
[3] |
A. Atangana and I. Koca,
Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, Chaos Solitons Fractals, 89 (2016), 447-454.
doi: 10.1016/j.chaos.2016.02.012. |
[4] |
A. Atangana and I. Koca,
On the new fractional derivative and application to Nonlinear Baggs and Freedman model, Journal of Nonlinear Sciences and Applications, 9 (2016), 2467-2480.
doi: 10.22436/jnsa.009.05.46. |
[5] |
A. Atangana,
On the new fractional derivative and application to nonlinear fisher's reaction-diffusion equation, Appl Math Comput, 273 (2016), 948-956.
doi: 10.1016/j.amc.2015.10.021. |
[6] |
M. Caputo and M. Fabrizio,
A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73-85.
|
[7] |
A. M. A. El-Sayed, A. Elsaid, I. L. El-Kalla and D. Hammad,
A homotopy perturbation technique for solving partial differential equations of fractional order in finite domains, Applied Mathematics and Computation, 218 (2012), 8329-8340.
doi: 10.1016/j.amc.2012.01.057. |
[8] |
A. K. Golmankhaneh, A. K. Golmankhaneh and D. Baleanu,
On nonlinear fractional KleinGordon equation, Signal Processing, 91 (2011), 446-451.
|
[9] |
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Science B. V., Amsterdam, 2006. |
[10] |
J. Losada and J. J. Nieto,
Properties of a new fractional derivative without singular kernel, Progr Fract Differ Appl, 1 (2015), 87-92.
|
[11] |
I. Podlubny,
Geometric and physical interpretation of fractional integration and fractional differentiation, Fractional Calculus and Applied Analysis, 5 (2002), 367-386.
|
[12] |
B. Sambandham and A. Vatsala,
Basic results for sequential caputo fractional differential equations, Mathematics, 3 (2015), 76-91.
|
[13] |
T. Yamamoto and X. Chen,
An existence and nonexistence theorem for solutions of nonlinear systems and its application to algebraic equations, Journal of Computational and Applied Mathematics, 30 (1990), 87-97.
doi: 10.1016/0377-0427(90)90008-N. |
show all references
References:
[1] |
A. A. M. Arafa, S. Z. Rida and H. Mohamed,
Homotopy analysis method for solving biological population model, Communications in Theoretical Physics, 56 (2011), 797-800.
doi: 10.1088/0253-6102/56/5/01. |
[2] |
A. Atangana and D. Baleanu,
New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Thermal Science, 20 (2016), 763-769.
doi: 10.2298/TSCI160111018A. |
[3] |
A. Atangana and I. Koca,
Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, Chaos Solitons Fractals, 89 (2016), 447-454.
doi: 10.1016/j.chaos.2016.02.012. |
[4] |
A. Atangana and I. Koca,
On the new fractional derivative and application to Nonlinear Baggs and Freedman model, Journal of Nonlinear Sciences and Applications, 9 (2016), 2467-2480.
doi: 10.22436/jnsa.009.05.46. |
[5] |
A. Atangana,
On the new fractional derivative and application to nonlinear fisher's reaction-diffusion equation, Appl Math Comput, 273 (2016), 948-956.
doi: 10.1016/j.amc.2015.10.021. |
[6] |
M. Caputo and M. Fabrizio,
A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73-85.
|
[7] |
A. M. A. El-Sayed, A. Elsaid, I. L. El-Kalla and D. Hammad,
A homotopy perturbation technique for solving partial differential equations of fractional order in finite domains, Applied Mathematics and Computation, 218 (2012), 8329-8340.
doi: 10.1016/j.amc.2012.01.057. |
[8] |
A. K. Golmankhaneh, A. K. Golmankhaneh and D. Baleanu,
On nonlinear fractional KleinGordon equation, Signal Processing, 91 (2011), 446-451.
|
[9] |
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Science B. V., Amsterdam, 2006. |
[10] |
J. Losada and J. J. Nieto,
Properties of a new fractional derivative without singular kernel, Progr Fract Differ Appl, 1 (2015), 87-92.
|
[11] |
I. Podlubny,
Geometric and physical interpretation of fractional integration and fractional differentiation, Fractional Calculus and Applied Analysis, 5 (2002), 367-386.
|
[12] |
B. Sambandham and A. Vatsala,
Basic results for sequential caputo fractional differential equations, Mathematics, 3 (2015), 76-91.
|
[13] |
T. Yamamoto and X. Chen,
An existence and nonexistence theorem for solutions of nonlinear systems and its application to algebraic equations, Journal of Computational and Applied Mathematics, 30 (1990), 87-97.
doi: 10.1016/0377-0427(90)90008-N. |
[1] |
Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Ebraheem O. Alzahrani. A fractional model for the dynamics of tuberculosis (TB) using Atangana-Baleanu derivative. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 937-956. doi: 10.3934/dcdss.2020055 |
[2] |
Kashif Ali Abro, Ilyas Khan. MHD flow of fractional Newtonian fluid embedded in a porous medium via Atangana-Baleanu fractional derivatives. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 377-387. doi: 10.3934/dcdss.2020021 |
[3] |
Editorial Office. WITHDRAWN: Fractional diffusion equation described by the Atangana-Baleanu fractional derivative and its approximate solution. Discrete and Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2020173 |
[4] |
Muhammad Bilal Riaz, Syed Tauseef Saeed. Comprehensive analysis of integer-order, Caputo-Fabrizio (CF) and Atangana-Baleanu (ABC) fractional time derivative for MHD Oldroyd-B fluid with slip effect and time dependent boundary condition. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3719-3746. doi: 10.3934/dcdss.2020430 |
[5] |
S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3747-3761. doi: 10.3934/dcdss.2020435 |
[6] |
G. M. Bahaa. Generalized variational calculus in terms of multi-parameters involving Atangana-Baleanu's derivatives and application. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 485-501. doi: 10.3934/dcdss.2020027 |
[7] |
César E. Torres Ledesma. Existence and concentration of solutions for a non-linear fractional Schrödinger equation with steep potential well. Communications on Pure and Applied Analysis, 2016, 15 (2) : 535-547. doi: 10.3934/cpaa.2016.15.535 |
[8] |
Rajesh Kumar, Jitendra Kumar, Gerald Warnecke. Convergence analysis of a finite volume scheme for solving non-linear aggregation-breakage population balance equations. Kinetic and Related Models, 2014, 7 (4) : 713-737. doi: 10.3934/krm.2014.7.713 |
[9] |
Olusola Kolebaje, Ebenezer Bonyah, Lateef Mustapha. The first integral method for two fractional non-linear biological models. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 487-502. doi: 10.3934/dcdss.2019032 |
[10] |
Eugenio Aulisa, Akif Ibragimov, Emine Yasemen Kaya-Cekin. Stability analysis of non-linear plates coupled with Darcy flows. Evolution Equations and Control Theory, 2013, 2 (2) : 193-232. doi: 10.3934/eect.2013.2.193 |
[11] |
Hamza Khalfi, Amal Aarab, Nour Eddine Alaa. Energetics and coarsening analysis of a simplified non-linear surface growth model. Discrete and Continuous Dynamical Systems - S, 2022, 15 (1) : 161-177. doi: 10.3934/dcdss.2021014 |
[12] |
Tommi Brander, Joonas Ilmavirta, Manas Kar. Superconductive and insulating inclusions for linear and non-linear conductivity equations. Inverse Problems and Imaging, 2018, 12 (1) : 91-123. doi: 10.3934/ipi.2018004 |
[13] |
Seda İğret Araz. New class of volterra integro-differential equations with fractal-fractional operators: Existence, uniqueness and numerical scheme. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2297-2309. doi: 10.3934/dcdss.2021053 |
[14] |
Priscila Santos Ramos, J. Vanterler da C. Sousa, E. Capelas de Oliveira. Existence and uniqueness of mild solutions for quasi-linear fractional integro-differential equations. Evolution Equations and Control Theory, 2022, 11 (1) : 1-24. doi: 10.3934/eect.2020100 |
[15] |
Pablo Ochoa. Approximation schemes for non-linear second order equations on the Heisenberg group. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1841-1863. doi: 10.3934/cpaa.2015.14.1841 |
[16] |
Tarek Saanouni. Non-linear bi-harmonic Choquard equations. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5033-5057. doi: 10.3934/cpaa.2020221 |
[17] |
Christoph Walker. Age-dependent equations with non-linear diffusion. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 691-712. doi: 10.3934/dcds.2010.26.691 |
[18] |
Daniele Garrisi, Vladimir Georgiev. Orbital stability and uniqueness of the ground state for the non-linear Schrödinger equation in dimension one. Discrete and Continuous Dynamical Systems, 2017, 37 (8) : 4309-4328. doi: 10.3934/dcds.2017184 |
[19] |
Franca Franchi, Barbara Lazzari, Roberta Nibbi. Uniqueness and stability results for non-linear Johnson-Segalman viscoelasticity and related models. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 2111-2132. doi: 10.3934/dcdsb.2014.19.2111 |
[20] |
Simona Fornaro, Ugo Gianazza. Local properties of non-negative solutions to some doubly non-linear degenerate parabolic equations. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 481-492. doi: 10.3934/dcds.2010.26.481 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]