|
B. S. T. Alkahtani
, Chua's circuit model with Atangana-Baleanu derivative with fractional order, Chaos, Solitons and Fractals, 89 (2016)
, 547-551.
|
|
U. M. Ascher
, S. J. Ruth
and B. T. R. Wetton
, Implicit-explicit methods for time-dependent partial differential equations, SIAM Journal on Numerical Analysis, 32 (1995)
, 797-823.
doi: 10.1137/0732037.
|
|
A. Ashyralyev
, A note on fractional derivatives and fractional powers of operators, Journal of Mathematical Analysis and Applications, 357 (2009)
, 232-236.
doi: 10.1016/j.jmaa.2009.04.012.
|
|
A. Atangana
, On the stability and convergence of the time-fractional variable order telegraph equation, Journal of Computational Physics, 293 (2015)
, 104-114.
doi: 10.1016/j.jcp.2014.12.043.
|
|
A. Atangana
, On the new fractional derivative and application to Fisher's reaction-diffusion, Applied Mathematics and Computation, 273 (2016)
, 948-956.
doi: 10.1016/j.amc.2015.10.021.
|
|
A. Atangana
and B. S. T. Alkahtani
, New model of groundwater owing within a confine aquifer: Application of Caputo-Fabrizio derivative, Arabian Journal of Geosciences, 9 (2016)
, 1-6.
|
|
A. Atangana
and R. T. Alqahtani
, Numerical approximation of the space-time Caputo-Fabrizio fractional derivative and application to groundwater pollution equation, Advances in Difference Equations, 2016 (2016)
, 1-13.
doi: 10.1186/s13662-016-0871-x.
|
|
A. Atangana
and D. Baleanu
, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Thermal Science, 20 (2016)
, 763-769.
doi: 10.2298/TSCI160111018A.
|
|
A. Atangana
and I. Koca
, Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, Chaos, Solitons and Fractals, 89 (2016)
, 447-454.
doi: 10.1016/j.chaos.2016.02.012.
|
|
T. Bakkyaraj
and R. Sahadevan
, Invariant analysis of nonlinear fractional ordinary differential equations with Riemann-Liouville fractional derivative, Nonlinear Dynamics, 80 (2015)
, 447-455.
doi: 10.1007/s11071-014-1881-4.
|
|
D. Baleanu
, R. Caponetto
and J. T. Machado
, Challenges in fractional dynamics and control theory, Journal of Vibration and Control, 22 (2016)
, 2151-2152.
doi: 10.1177/1077546315609262.
|
|
A. H. Bhrawy
, M. A. Zaky
and R. A. Van Gorder
, A space-time Legendre spectral tau method for the two-sided space-time Caputo fractional diffusion-wave equation, Numerical Algorithms, 71 (2016)
, 151-180.
doi: 10.1007/s11075-015-9990-9.
|
|
A. H. Bhrawy
and M. A. Abdelkawy
, A fully spectral collocation approximation for multi-dimensional fractional Schrödinger equations, Journal of Computational Physics, 294 (2015)
, 462-483.
doi: 10.1016/j.jcp.2015.03.063.
|
|
A. H. Bhrawy
, A Jacobi spectral collocation method for solving multi-dimensional nonlinear fractional sub-diffusion equations, Numerical Algorithms, 73 (2016)
, 91-113.
doi: 10.1007/s11075-015-0087-2.
|
|
A. Bueno-Orovio
, D. Kay
and K. Burrage
, Fourier spectral methods for fractional-in-space reaction-diffusion equations, BIT Numerical mathematics, 54 (2014)
, 937-954.
doi: 10.1007/s10543-014-0484-2.
|
|
M. Caputo, Linear models of dissipation whose $ \mathcal{Q} $ is almost frequency independent: Part Ⅱ, J. R. Astr. Soc., 13 (1967), 529-539: Reprinted in: Fractional Calculus and Applied Analysis, 11 (2008), 4-14.
|
|
M. Caputo
and M. Fabrizio
, Applications of new time and spatial fractional derivatives with exponential kernels, Progress in Fractional Differentiation and Applications, 2 (2016)
, 1-11.
doi: 10.18576/pfda/020101.
|
|
F. Chen
, Q. Xu
and J. S. Hesthaven
, A multi-domain spectral method for time-fractional differential equations, Journal of Computational Physics, 293 (2015)
, 157-172.
doi: 10.1016/j.jcp.2014.10.016.
|
|
W. Chen
, L. Ye
and H. Sun
, Fractional diffusion equations by Kansa method, Computers and Mathematics with Applications, 59 (2010)
, 1614-1620.
doi: 10.1016/j.camwa.2009.08.004.
|
|
A. Coronel-Escamilla
, J. F. Gómez-Aguilar
, M. G. López-López
, V. M. Alvarado-Martínez
and G. V. Guerrero-Ramírez
, Triple pendulum model involving fractional derivatives with different kernels, Chaos, Solitons and Fractals, 91 (2016)
, 248-261.
doi: 10.1016/j.chaos.2016.06.007.
|
|
S. M. Cox
and P. C. Matthews
, Exponential time differencing for stiff systems, Journal of Computational Physics, 176 (2002)
, 430-455.
doi: 10.1006/jcph.2002.6995.
|
|
X. Li Ding
and Y. Lin-Jiang
, Analytical solutions for the multi-term time-space fractional advection-diffusion equations with mixed boundary conditions, Nonlinear Analysis: Real World Applications, 14 (2013)
, 1026-1033.
doi: 10.1016/j.nonrwa.2012.08.014.
|
|
E. H. Doha, A. H. Bhrawy and S. S. Ezz-Eldien, An efficient Legendre spectral tau matrix formulation for solving fractional sub-diffusion and reaction sub-diffusion equations,
Journal of Computational and Nonlinear Dynamics, 10 (2015), 021019.
|
|
J. F. Gómez-Aguilar
, T. Córdova-Fraga
, J. E. Escalante-Martínez
, C. Calderón-Ramón
and R. F. Escobar-Jiménez
, Electrical circuits described by a fractional derivative with regular kernel, Rev. Mex. Fis, 62 (2016)
, 144-154.
|
|
J. F. Gómez-Aguilar
, M. G. López-López
, V. M. Alvarado-Martínez
, J. Reyes-Reyes
and M. Adam-Medina
, Modeling diffusive transport with a fractional derivative without singular kernel, Physica A: Statistical Mechanics and its Applications, 447 (2016)
, 467-481.
doi: 10.1016/j.physa.2015.12.066.
|
|
J. F. Gómez-Aguilar
, L. Torres
, H. Yépez-Martínez
, D. Baleanu
, J. M. Reyes
and I. O. Sosa
, Fractional Liénard type model of a pipeline within the fractional derivative without singular kernel, Advances in Difference Equations, 2016 (2016)
, 1-13.
doi: 10.1186/s13662-016-0908-1.
|
|
M. H. Heydari
, M. R. Hooshmandasl
and F. Mohammadi
, Legendre wavelets method for solving fractional partial differential equations with Dirichlet boundary conditions, Applied Mathematics and Computation, 234 (2014)
, 267-276.
doi: 10.1016/j.amc.2014.02.047.
|
|
C. Ingo
, T. R. Barrick
, A. G. Webb
and I. Ronen
, Accurate Padé global approximations for the Mittag-Leffler function, its inverse, and its partial derivatives to efficiently compute convergent power series, International Journal of Applied and Computational Mathematics, 3 (2017)
, 347-362.
doi: 10.1007/s40819-016-0158-7.
|
|
Y. Jiao
, L.-L. Wang
and C. Huang
, Well-conditioned fractional collocation methods using fractional Birkhoff interpolation basis, Journal of Computational Physics, 305 (2016)
, 1-28.
doi: 10.1016/j.jcp.2015.10.029.
|
|
N. A. Khan
, N. U. Khan
, A. Ara
and M. Jamil
, Approximate analytical solutions of fractional reaction-diffusion equations, Journal of King Saud University-Science, 24 (2012)
, 111-118.
doi: 10.1016/j.jksus.2010.07.021.
|
|
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo,
Theory and Applications of Fractional Differential Equations, Elsevier, Netherlands, 2006.
|
|
Q. Liu
, F. Liu
, Y. Gu
, P. Zhuang
, J. Chen
and I. Turner
, A meshless method based on Point Interpolation Method (PIM) for the space fractional diffusion equation, Applied Mathematics and Computation, 256 (2015)
, 930-938.
doi: 10.1016/j.amc.2015.01.092.
|
|
J. Ma
, J. Liu
and Z. Zhou
, Convergence analysis of moving finite element methods for space fractional differential equations, Journal of Computational and Applied Mathematics, 255 (2014)
, 661-670.
doi: 10.1016/j.cam.2013.06.021.
|
|
M. M. Meerschaert
and C. Tadjeran
, Finite difference approximations for fractional advection-dispersion flow equations, Journal of Computational and Applied Mathematics, 172 (2004)
, 65-77.
doi: 10.1016/j.cam.2004.01.033.
|
|
M. M. Meerschaert
and C. Tadjeran
, Finite difference approximations for two-sided space-fractional partial differential equations, Applied Numerical Mathematics, 56 (2006)
, 80-90.
doi: 10.1016/j.apnum.2005.02.008.
|
|
J. D. Murray,
Mathematical Biology Ⅰ: An Introduction, Springer-Verlag, New York, 2002.
|
|
W. M. Ni
, Diffusion, cross-diffusion and their spike-layer steady states, Notices of the American Mathematical Society, 45 (1998)
, 9-18.
|
|
Z. Odibat
, C. Bertelle
, M. A. Aziz-Alaoui
and G. H. Duchamp
, A multistep differential transform method and application to non-chaotic or chaotic systems, Computers and mathematics with Applications, 59 (2010)
, 1462-1472.
doi: 10.1016/j.camwa.2009.11.005.
|
|
A. Okubo,
Diffusion and Ecological Problems: Mathematical Models, Springer-Verlag, Berlin, 1980.
|
|
K. M. Owolabi
and K. C. Patidar
, Higher-order time-stepping methods for time-dependent reaction-diffusion equations arising in biology, Applied Mathematics and Computation, 240 (2014)
, 30-50.
doi: 10.1016/j.amc.2014.04.055.
|
|
K. M. Owolabi
and K. C. Patidar
, Numerical solution of singular patterns in one-dimensional Gray-Scott-like models, International Journal of Nonlinear Science and Numerical Simulations, 15 (2014)
, 437-462.
doi: 10.1515/ijnsns-2013-0124.
|
|
K. M. Owolabi
, Robust IMEX schemes for solving two-dimensional reaction iffusion models, International Journal of Nonlinear Science and Numerical Simulations, 16 (2015)
, 271-284.
doi: 10.1515/ijnsns-2015-0004.
|
|
K. M. Owolabi and K. C. Patidar, Numerical simulations of multicomponent ecological models with adaptive methods,
Theoretical Biology and Medical Modelling, 13 (2016), p1,
doi: 10.1186/s12976-016-0027-4.
|
|
K. M. Owolabi
, Mathematical analysis and numerical simulation of patterns in fractional and classical reaction-diffusion systems, Chaos Solitons and Fractals, 93 (2016)
, 89-98.
doi: 10.1016/j.chaos.2016.10.005.
|
|
K. M. Owolabi and A. Atangana, Numerical solution of fractional-in-space nonlinear Schrödinger equation with the Riesz fractional derivative,
The European Physical Journal Plus, 131 (2016), 335.
doi: 10.1140/epjp/i2016-16335-8.
|
|
K. M. Owolabi, Numerical solution of diffusive HBV model in a fractional medium,
Springer Plus, 5 (2016), 1643.
doi: 10.1186/s40064-016-3295-x.
|
|
K. M. Owolabi
, Mathematical study of two-variable systems with adaptive numerical methods, Numerical Analysis and Applications, 9 (2016)
, 218-230.
doi: 10.15372/SJNM20160304.
|
|
K. M. Owolabi
, Mathematical study of multispecies dynamics modeling predator-prey spatial interactions, Journal of Numerical Mathematics, 25 (2017)
, 1-16.
doi: 10.1515/jnma-2015-0094.
|
|
K. M. Owolabi
and K. C. Patidar
, Solution of pattern waves for diffusive Fisher-like nonlinear equations with adaptive methods, International Journal of Nonlinear Science and Numerical Simulations, 17 (2016)
, 291-304.
doi: 10.1515/ijnsns-2015-0173.
|
|
K. M. Owolabi
, Robust and adaptive techniques for numerical simulation of nonlinear partial differential equations of fractional order, Communications in Nonlinear Science and Numerical Simulation, 44 (2017)
, 304-317.
doi: 10.1016/j.cnsns.2016.08.021.
|
|
R. K. Pandey
, O. P. Singh
and V. K. Baranwal
, An analytic algorithm for the space-time fractional advection-dispersion equation, Computer Physics Communications, 182 (2011)
, 1134-1144.
doi: 10.1016/j.cpc.2011.01.015.
|
|
P. Y. H. Pang
and M. X. Wang
, Strategy and stationary pattern in a three-species predator-prey model, Journal of Differential Equations, 200 (2004)
, 245-273.
doi: 10.1016/j.jde.2004.01.004.
|
|
P. Y. H. Pang
and M. X. Wang
, Non-constant positive steady states of a predator-prey system with non-monotonic functional response and diffusion, Proceedings of the London Mathematical Society, 88 (2004)
, 135-157.
doi: 10.1112/S0024611503014321.
|
|
J. E. Pearson
, Complex patterns in a simple system, Science, 261 (1993)
, 189-192.
doi: 10.1126/science.261.5118.189.
|
|
E. Pindza
and K. M. Owolabi
, Fourier spectral method for higher order space fractional reaction-diffusion equations, Communications in Nonlinear Science and Numerical Simulation, 40 (2016)
, 112-128.
doi: 10.1016/j.cnsns.2016.04.020.
|
|
I. Podlubny,
Fractional Differential Equations, Academic Press, New York, 1999.
|
|
I. Podlubny
, A. Chechkin
, T. Skovranek
, Y. Q. Chen
and B. B. Jara
, Matrix approach to discrete fractional calculus Ⅱ: Partial fractional differential equations, Journal of Computational Physics, 228 (2009)
, 3137-3153.
doi: 10.1016/j.jcp.2009.01.014.
|
|
S. S. Ray
, Analytical solution for the space fractional diffusion equation by two-step Adomian Decomposition Method, Communications in Nonlinear Science and Numerical simulation, 14 (2009)
, 1295-1306.
doi: 10.1016/j.cnsns.2008.01.010.
|
|
M. Ruzhansky and S. Tikhonov,
Methods of Fourier Analysis and Approximation Theory, Springer International Publishing, Switzerland, 2016.
|
|
R. A. Satnoianu
, M. Menzinger
and P. K. Maini
, Turing istabilities in general systems, Journal of Mathematical Biology, 41 (2000)
, 493-512.
doi: 10.1007/s002850000056.
|
|
D. Sierociuk, A. Dzielinski, G. Sarwas, I. Petras, I. Podlubny and T. Skovranek, Modelling heat transfer in heterogeneous media using fractional calculus,
Philosophical Transactions of the Royal Society A, 371 (2013), 20120146, 10 pp.
doi: 10.1098/rsta.2012.0146.
|
|
E. Sousan
and C. Li
, A weighted finite difference method for the fractional diffusion equation based on the Riemann-Liouville derivative, Applied Numerical Mathematics, 90 (2015)
, 22-37.
doi: 10.1016/j.apnum.2014.11.007.
|
|
W. Y. Tian
, H. Zhou
and W. Deng
, A class of second order difference approximations for
solving space fractional diffusion equations, Mathematics of Computation, 84 (2015)
, 1703-1727.
doi: 10.1090/S0025-5718-2015-02917-2.
|
|
V. Volpert
and S. Petrovskii
, Reaction-diffusion waves in biology, Physics of Life Reviews, 6 (2009)
, 267-310.
|
|
M. X. Wang
, Stationary patterns for a prey-predator model with prey-dependent and ratio-dependent functional responses and diffusion, Physica D, 196 (2004)
, 172-192.
doi: 10.1016/j.physd.2004.05.007.
|
|
H. Wang
and N. Du
, Fast alternating-direction finite difference methods for three-dimensional space-fractional diffusion equations, Journal of Computational Physics, 258 (2014)
, 305-318.
doi: 10.1016/j.jcp.2013.10.040.
|
|
F. Zeng
, C. Li
, F. Liu
and I. Turner
, Numerical algorithms for time-fractional subdiffusion equation with second-order accuracy, SIAM Journal on Scientific Computing, 37 (2015)
, A55-A78.
doi: 10.1137/14096390X.
|
|
F. Zeng
, F. Liu
, C. Li
, K. Burrage
, I. Turner
and V. Anh
, A Crank-Nicolson ADI spectral method for a two-dimensional riesz space fractional nonlinear reaction-diffusion equation, SIAM Journal on Numerical Analysis, 52 (2014)
, 2599-2622.
doi: 10.1137/130934192.
|
|
M. Zheng
, F. Liu
, I. Turner
and V. Anh
, A novel high order space-time spectral method for the time fractional fokker-planck equation, SIAM Journal on Scientific Computing, 37 (2015)
, A701-A724.
doi: 10.1137/140980545.
|
|
Y. Zhou,
Basic Theory of Fractional Differential Equations, World Scientific, New Jersey, 2014.
doi: 10.1142/9069.
|