|
F. B. Adda
, The differentiability in the fractional calculus, Nonlinear Analysis, 47 (2001)
, 5423-5428.
doi: 10.1016/S0362-546X(01)00646-0.
|
|
G. Akrivis
, M. Crouzeix
and C. Makridakis
, Implicit xplicit multistep methods for quasilinear parabolic equations, Numerische Mathematik, 82 (1999)
, 521-541.
doi: 10.1007/s002110050429.
|
|
O. J. J. Algahtani
, Comparing the Atangana-Baleanu and Caputo-Fabrizio derivative with fractional order: Allen Cahn model, Chaos Solitons and Fractals, 89 (2016)
, 552-559.
doi: 10.1016/j.chaos.2016.03.026.
|
|
B. S. T. Alkahtani
, Chua's circuit model with Atangana-Baleanu derivative with fractional order, Chaos, Solitons and Fractals, 89 (2016)
, 547-551.
|
|
B. S. T. Alkahtani
and A. Atangana
, Controlling the wave movement on the surface of shallow water with the Caputo-Fabrizio derivative with fractional order, Chaos Soliton and Fractals, 89 (2016)
, 539-546.
doi: 10.1016/j.chaos.2016.03.012.
|
|
L. J. S. Allen,
An Introduction to Mathematical Biology, Pearson Education, Inc., New Jersey, 2007.
|
|
E. O. Asante-Asamani
, A. Q. M. Khaliq
and B. A. Wade
, A real distinct poles Exponential Time Differencing scheme for reaction diffusion systems, Journal of Computational and Applied Mathematics, 299 (2016)
, 24-34.
doi: 10.1016/j.cam.2015.09.017.
|
|
U. M. Ascher
, S. J. Ruth
and R. J. Spiteri
, Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations, Applied Numerical Mathematics, 25 (1997)
, 151-167.
doi: 10.1016/S0168-9274(97)00056-1.
|
|
U. M. Ascher
, S. J. Ruth
and B. T. R. Wetton
, Implicit-explicit methods for time-dependent partial differential equations, SIAM Journal on Numerical Analysis, 32 (1995)
, 797-823.
doi: 10.1137/0732037.
|
|
A. Atangana
and R. T. Alqahtani
, Numerical approximation of the space-time Caputo-Fabrizio fractional derivative and application to groundwater pollution equation, Advances in Difference Equations, 2016 (2016)
, 1-13.
doi: 10.1186/s13662-016-0871-x.
|
|
A. Atangana
and D. Baleanu
, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Thermal Science, 20 (2016)
, 763-769.
doi: 10.2298/TSCI160111018A.
|
|
A. Atangana
and B. S. T. Alkahtani
, New model of groundwater owing within a confine aquifer: Application of Caputo-Fabrizio derivative, Arabian Journal of Geosciences, 9 (2016)
, 3647-3654.
|
|
A. Atangana
and I. Koca
, Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, Chaos, Solitons and Fractals, 89 (2016)
, 447-454.
doi: 10.1016/j.chaos.2016.02.012.
|
|
D. Baleanu
, R. Caponetto
and J. T. Machado
, Challenges in fractional dynamics and control theory, Journal of Vibration and Control, 22 (2016)
, 2151-2152.
doi: 10.1177/1077546315609262.
|
|
D. Baleanu, K. Diethelm and E. Scalas,
Fractional Calculus: Models and Numerical Methods, Series on Complexity, Nonlinearity and Chaos, World Scientific, 2012.
doi: 10.1142/9789814355216.
|
|
D. A. Benson
, S. Wheatcraft
and M. M. Meerschaert
, pplication of a fractional advection-dispersion equation, Water Resources Research, 36 (2000)
, 1403-1412.
|
|
H. P. Bhatt
and A. Q. M. Khaliq
, The locally extrapolated exponential time differencing
LOD scheme for multidimensional reaction-diffusion systems, Journal of Computational and Applied Mathematics, 285 (2015)
, 256-278.
doi: 10.1016/j.cam.2015.02.017.
|
|
A. H. Bhrawy
, M. A. Zaky
and R. A. Van Gorder
, A space-time Legendre spectral tau method for the two-sided space-time Caputo fractional diffusion-wave equation, Numerical Algorithms, 71 (2016)
, 151-180.
doi: 10.1007/s11075-015-9990-9.
|
|
A. H. Bhrawy
and M. A. Abdelkawy
, A fully spectral collocation approximation for multi-dimensional fractional Schrödinger equations, Journal of Computational Physics, 294 (2015)
, 462-483.
doi: 10.1016/j.jcp.2015.03.063.
|
|
A. H. Bhrawy
, A Jacobi spectral collocation method for solving multi-dimensional nonlinear fractional sub-diffusion equations, Numerical Algorithms, 73 (2016)
, 91-113.
doi: 10.1007/s11075-015-0087-2.
|
|
N. F. Britton,
Reaction-diffusion Equations and their Applications to Biology, Academic Press, London, 1986.
|
|
A. Bueno-Orovio
, D. Kay
and K. Burrage
, Fourier spectral methods for fractional-in-space reaction-diffusion equations, BIT Numerical mathematics, 54 (2014)
, 937-954.
doi: 10.1007/s10543-014-0484-2.
|
|
M. P. Calvo
, J. de Frutos
and J. Novo
, Linearly implicit Runge-Kutta methods for advection-reaction-diffusion equations, Applied Numerical Mathematics, 37 (2001)
, 535-549.
doi: 10.1016/S0168-9274(00)00061-1.
|
|
M. Caputo
and M. Fabrizio
, Applications of new time and spatial fractional derivatives with exponential kernels, Progress in Fractional Differentiation and Applications, 2 (2016)
, 1-11.
|
|
S. M. Cox
and P. C. Matthews
, Exponential time differencing for stiff systems, Journal of Computational Physics, 176 (2002)
, 430-455.
doi: 10.1006/jcph.2002.6995.
|
|
Q. Du
and W. Zhu
, Stability analysis and applications of the exponential time differencing schemes, Journal of Computational and Applied Mathematics, 22 (2004)
, 200-209.
|
|
Q. Du
and W. Zhu
, Analysis and applications of the exponential time differencing schemes and their contour integration modifications, BIT Numerical Mathematics, 45 (2005)
, 307-328.
doi: 10.1007/s10543-005-7141-8.
|
|
W. Feller
, On a generalization of Marcel Riesz potentials and the semi-groups generated by them, Middlelanden Lunds Universitets Matematiska Seminarium Comm. Sem. Mathm Universit de Lund (Suppl. ddi a M. Riesz), 1952 (1952)
, 72-81.
|
|
W. Feller,
An Introduction to Probability Theory and Its Applications, New York-London-Sydney, 1968.
|
|
W. Gear
and I. Kevrekidis
, Projective methods for stiff differential equations: Problems with gaps in their eigenvalue spectrum, SIAM Journal on Scientific Computing, 24 (2003)
, 1091-1106.
doi: 10.1137/S1064827501388157.
|
|
I. Grooms
and K. Julien
, Linearly implicit methods for nonlinear PDEs with linear dispersion and dissipation, Journal of Computational Physics, 230 (2011)
, 3630-3650.
doi: 10.1016/j.jcp.2011.02.007.
|
|
E. Hairer and G. Wanner,
Solving Ordinary Differential Equations Ⅱ: Stiff and Differential Algebraic Problems, Springer-Verlag, New York, 1996.
doi: 10.1007/978-3-642-05221-7.
|
|
A. K. Kassam
and L. N. Trefethen
, Fourth-order time-stepping for stiff PDEs, SIAM Journal Scientific Computing, 26 (2005)
, 1214-1233.
doi: 10.1137/S1064827502410633.
|
|
C. Kennedy
and M. Carpenter
, Additive Runge-Kutta schemes for covection-diffusion-reaction-diffusion equations, Applied Numerical Mathematics, 44 (2003)
, 139-181.
doi: 10.1016/S0168-9274(02)00138-1.
|
|
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo,
Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
|
|
M. Kot,
Elements of Mathematical Ecology, Cambridge University Press, United Kingdom, 2001.
doi: 10.1017/CBO9780511608520.
|
|
T. Koto
, IMEX Runge-Kutta schemes for reaction-diffusion equations, Journal of Computational and Applied Mathematics, 215 (2008)
, 182-195.
doi: 10.1016/j.cam.2007.04.003.
|
|
C. Li and F. Zeng,
Numerical Methods for Fractional Calculus, CRC Press, Taylor and Francis Group, London, 2015.
|
|
D. Li
, C. Zhang
, W. Wang
and Y. Zhang
, Implicit-explicit predictor-corrector schemes for nonlinear parabolic differential equations, Applied Mathematical Modelling, 35 (2011)
, 2711-2722.
doi: 10.1016/j.apm.2010.11.061.
|
|
Y. F. Luchko
, H. Matinez
and J. J. Trujillo
, Fractional Fourier transform and some of its applications, Fractional Calculus and Applied Analysis, 11 (2008)
, 457-470.
|
|
R. L. Magin,
Fractional Calculus in Bioengineering, Begell House, Connecticut, 2006.
|
|
R. Magin
, M. D. Ortigueira
, I. Podlubny
and J. Trujillo
, On the fractional signals and systems, Signal Processing, 91 (2011)
, 350-371.
doi: 10.1016/j.sigpro.2010.08.003.
|
|
R. L. Magin
, Fractional calculus models of complex dynamics in biological tissues, Computers and Mathematics with Applications, 59 (2010)
, 1586-1593.
doi: 10.1016/j.camwa.2009.08.039.
|
|
F. Mainardi
, G. Pagnini
and R. K. Saxena
, Fox H functions in fractional diffusion, Journal of Computational and Applied Mathematics, 178 (2005)
, 321-331.
doi: 10.1016/j.cam.2004.08.006.
|
|
M. M. Meerschaert
, D. A. Benson
and S. W. Wheatcraft
, Subordinated advection-dispersion equation for contaminant transport, Water Resource Research, 37 (2001)
, 1543-1550.
|
|
M. M. Meerschaert
and C. Tadjeran
, Finite difference approximations for fractional advectiondispersion flow equations, Journal of Computational and Applied Mathematics, 172 (2004)
, 65-77.
doi: 10.1016/j.cam.2004.01.033.
|
|
M. M. Meerschaert
, H. P. Scheffler
and C. Tadjeran
, Finite difference methods for twodimensional fractional dispersion equation, Journal of Computational Physics, 211 (2006)
, 249-261.
doi: 10.1016/j.jcp.2005.05.017.
|
|
F. C. Meral
, T. J. Royston
and R. Magin
, Fractional calculus in viscoelasticity: An experimental study, Communications in Nonlinear Science and Numerical Simulation, 15 (2010)
, 939-945.
doi: 10.1016/j.cnsns.2009.05.004.
|
|
R. Metzler
and J. Klafter
, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Physics Reports, 339 (2000)
, 1-77.
doi: 10.1016/S0370-1573(00)00070-3.
|
|
R. Metzler
and J. Klafter
, The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics, Journal of Physics A: Mathematical and General, 37 (2004)
, R161-R208.
doi: 10.1088/0305-4470/37/31/R01.
|
|
K. S. Miller and B. Ross,
An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993.
|
|
J. D. Murray,
Mathematical Biology Ⅰ: An Introduction, Springer-Verlag, New York, 2002.
|
|
M. D. Ortigueira,
Fractional Calculus for Scientists and Engineers, Springer, New York, 2011.
doi: 10.1007/978-94-007-0747-4.
|
|
K. M. Owolabi
, Mathematical study of two-variable systems with adaptive numerical methods, Numerical Analysis and Applications, 19 (2016)
, 218-230.
doi: 10.15372/SJNM20160304.
|
|
K. M. Owolabi
, Robust and adaptive techniques for numerical simulation of nonlinear partial differential equations of fractional order, Communications in Nonlinear Science and Numerical Simulations, 44 (2017)
, 304-317.
doi: 10.1016/j.cnsns.2016.08.021.
|
|
K. M. Owolabi and A. Atangana, Numerical solution of fractional-in-space nonlinear Schrödinger equation with the Riesz fractional derivative,
The European Physical Journal Plus, 131 (2016), 335.
doi: 10.1140/epjp/i2016-16335-8.
|
|
K. M. Owolabi
, Mathematical analysis and numerical simulation of patterns in fractional and classical reaction-diffusion systems, Chaos Solitons and Fractals, 93 (2016)
, 89-98.
doi: 10.1016/j.chaos.2016.10.005.
|
|
K. M. Owolabi
, Robust and adaptive techniques for numerical simulation of nonlinear partial differential equations of fractional order, Communications in Nonlinear Science and Numerical Simulation, 44 (2017)
, 304-317.
doi: 10.1016/j.cnsns.2016.08.021.
|
|
K. M. Owolabi
, Robust IMEX schemes for solving two-dimensional reaction-diffusion models, International Journal of Nonlinear Science and Numerical Simulations, 16 (2015)
, 271-284.
doi: 10.1515/ijnsns-2015-0004.
|
|
K. M. Owolabi
and K. C. Patidar
, Higher-order time-stepping methods for time-dependent reaction-diffusion equations arising in biology, Applied Mathematics and Computation, 240 (2014)
, 30-50.
doi: 10.1016/j.amc.2014.04.055.
|
|
S. Petrovskii
, K. Kawasaki
, F. Takasu
and N. Shigesada
, Diffusive waves, dynamic stabilization and spatio-temporal chaos in a community of three competitive species, Japan Journal of Industrial and Applied Mathematics, 18 (2001)
, 459-481.
doi: 10.1007/BF03168586.
|
|
E. Pindza
and K. M. Owolabi
, Fourier spectral method for higher order space fractional reaction-diffusion equations, Communications in Nonlinear Science and Numerical Simulation, 40 (2016)
, 112-128.
doi: 10.1016/j.cnsns.2016.04.020.
|
|
I. Podlubny,
Fractional Differential Equations, Academic Press, San Diego, 1999.
|
|
J. Sabatier, O. P. Agrawal and J. A. Tenreiro Machado,
Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, Springer, Netherlands, 2007.
|
|
S. G. Samko, A. A. Kilbas and O. I. Maritchev,
Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Amsterdam, 1993.
|
|
E. Scalas
, R. Gorenflo
and F. Mainardid
, Fractional calculus and continuous-time finance, Physica A: Statistical Mechanics and its Applications, 284 (2000)
, 376-384.
doi: 10.1016/S0378-4371(00)00255-7.
|
|
Z. Tomovski
, T. Sandev
, R. Metzler
and J. Dubbeldam
, Generalized space-time fractional diffusion equation with composite fractional time derivative, Physica A, 391 (2012)
, 2527-2542.
doi: 10.1016/j.physa.2011.12.035.
|
|
V. Volpert
and S. Petrovskii
, Reaction-diffusion waves in biology, Physics of Life Reviews, 6 (2009)
, 267-310.
|
|
E. Weinan
, Analysis of the heterogeneous multiscale method for ordinary differential equations, Communications in Mathematical Sciences, 3 (2003)
, 423-436.
doi: 10.4310/CMS.2003.v1.n3.a3.
|
|
Q. Yang
, F. Liu
and I. Turner
, Numerical methods for fractional partial differential equations with Riesz space fractional derivatives, Applied Mathematical Modelling, 34 (2010)
, 200-218.
doi: 10.1016/j.apm.2009.04.006.
|