The objective of the present paper is to study in an analytical way the existence and the stability of the libration points, in the restricted three-body problem, when the primaries are triaxial rigid bodies in the case of the Euler angles of the rotational motion are equal to $ θ_i = π/2, \, ψ_i = 0, \,\varphi_i = π/2 $, $ i = 1, 2 $. We prove that the locations and the stability of the triangular points change according to the effect of the triaxiality of the primaries. Moreover, the solution of long and short periodic orbits for stable motion is presented.
Citation: |
E. I. Abouelmagd
, M. S. Alhothuali
, J. L. G. Guirao
and H. M. Malaikah
, Periodic and secular solutions in the restricted three-body problem under the effect of zonal harmonic parameters, Appl. Math. & Info. Sci., 9 (2015)
, 1659-1669.
![]() ![]() |
|
E. I. Abouelmagd
, M. S. Alhothuali
, J. L. G. Guirao
and H. M. Malaikah
, On the periodic structure in the planar photogravitational Hill problem, Appl. Math. & Info. Sci., 9 (2015)
, 2409-2416.
![]() ![]() |
|
E. I. Abouelmagd
, M. S. Alhothuali
, J. L. G. Guirao
and H. M. Malaikah
, The effect of zonal harmonic coefficients in the framework of the restricted three-body problem, Adv. Space Res., 55 (2015)
, 1660-1672.
![]() |
|
E. I. Abouelmagd
, F. Alzahrani
, J. L. G. Guirao
and A. Hobiny
, Periodic orbits around the collinear libration points, J. Nonlinear Sci. Appl. (JNSA), 9 (2016)
, 1716-1727.
doi: 10.22436/jnsa.009.04.27.![]() ![]() ![]() |
|
E. I. Abouelmagd
, H. M. Asiri
and M. A. Sharaf
, The effect of oblateness in the perturbed restricted three-body problem, Meccanica, 48 (2013)
, 2479-2490.
doi: 10.1007/s11012-013-9762-3.![]() ![]() ![]() |
|
E. I. Abouelmagd
, M. E. Awad
, E. M. A. Elzayat
and I. A. Abbas
, Reduction the secular solution to periodic solution in the generalized restricted three-body problem, Astrophys. Space Sci., 350 (2014)
, 495-505.
![]() |
|
E. I. Abouelmagd
and S. M. El-Shaboury
, Periodic orbits under combined effects of oblateness and radiation in the restricted problem of three bodies, Astrophys. Space Sci., 341 (2012)
, 331-341.
![]() |
|
E. I. Abouelmagd
, Existence and stability of triangular points in the restricted three-body problem with numerical applications, Astrophys. Space Sci., 342 (2012)
, 45-53.
![]() |
|
E. I. Abouelmagd
and M. A. Sharaf
, The motion around the libration points in the restricted three-body problem with the effect of radiation and oblateness, Astrophys. Space Sci., 344 (2013)
, 321-332.
![]() |
|
E. I. Abouelmagd
, Stability of the triangular points under combined effects of radiation and oblateness in the restricted three-body problem, Earth Moon Planets, 110 (2013)
, 143-155.
![]() |
|
E. I. Abouelmagd
, The effect of photogravitational force and oblateness in the perturbed restricted three-body problem, Astrophys. Space Sci., 346 (2013)
, 51-69.
![]() |
|
E. I. Abouelmagd
, J. L. G. Guirao
and A. Mostafa
, Numerical integration of the restricted three-body problem with Lie series, Astrophys. Space Sci., 354 (2014)
, 369-378.
![]() |
|
E. I. Abouelmagd, A. Mostafa and J. L. G. Guirao, A first order automated Lie transform International Journal of Bifurcation and Chaos, 25 (2015), 1540026, 10pp.
doi: 10.1142/S021812741540026X.![]() ![]() ![]() |
|
E. I. Abouelmagd
and A. Mostafa
, Out of plane equilibrium points locations and the forbidden movement regions in the restricted three-body problem with variable mass, Astrophys. Space Sci., 357 (2015)
, 58-68.
![]() |
|
E. I. Abouelmagd
and J. L. G. Guirao
, On the perturbed restricted three-body problem, Applied Mathematics and Nonlinear Sciences, 1 (2016)
, 123-144.
![]() |
|
F. Alzahrani
, E. I. Abouelmagd
, J. L. G. Guirao
and A. Hobiny
, On the libration collinear points in the restricted three-body problem, Open Physics, 15 (2017)
, 58-67.
![]() |
|
K. B. Bhatnagar
and P. P. Hallan
, Effect of perturbed potentials on the stability of libration points in the restricted problem, Celes. Mech. Dyn. Astr., 20 (1979)
, 95-103.
doi: 10.1007/BF01230231.![]() ![]() ![]() |
|
R. Broucke
, A. Elipe
and A. Riaguas
, On the figure-8 periodic solutions in the three-body problem, Chaos, Solitons and Fractals, 30 (2006)
, 513-520.
doi: 10.1016/j.chaos.2005.11.082.![]() ![]() ![]() |
|
S. M. Elshaboury, E. I. Abouelmagd, V. S. Kalantonis and E. A. Perdios, The planar restricted three{body problem when both primaries are triaxial rigid bodies: Equilibrium points and periodic orbits, Astrophys. Space Sci., 361 (2016), Paper No. 315, 18 pp.
doi: 10.1007/s10509-016-2894-x.![]() ![]() ![]() |
|
S. W. McCusky, Introduction to Celestial Mechanics, Addision Wesley, 1963.
![]() |
|
R. K. Sharma
, The linear stability of libration points of the photogravitational restricted three-body problem when the smaller primary is an oblate spheroid, Astrophys. Space Sci., 135 (1987)
, 271-281.
![]() |
|
R. K. Sharma
, Z. A. Taqvi
and K. B. Bhatnagar
, Existence of libration Points in the restricted three body problem when both primaries are triaxial rigid bodies, Indian J. Pure Appl. Math., 32 (2001)
, 125-141.
![]() ![]() |
|
R. K. Sharma
, Z. A. Taqvi
and K. B. Bhatnagar
, Existence of libration Points in the restricted three body problem when both primaries are triaxial rigid bodies and source of radition, Indian J. Pure Appl. Math., 32 (2001)
, 981-994.
![]() ![]() |
|
J. Singh
and B. Ishwar
, Stability of triangular points in the photogravitational restricted three body problem, Bull. Astr. Soc. India, 27 (1999)
, 415-424.
![]() |
|
J. Singh
and H. L. Mohammed
, Robe's circular restricted three-body problem under oblate and triaxial primaries, Earth Moon Planets, 109 (2012)
, 1-11.
doi: 10.1007/s11038-012-9397-8.![]() ![]() |
|
V. Szebehely, Theory of Orbits: The Restricted Three Body Problem, Academic Press, 1967.
![]() |
|
F. B. Zazzera, F. Topputo and M. Mauro Massari, Assessment of Mission Design Including Utilization of Libration Points and Weak Stability Boundaries, ESA / ESTEC, 2005.
![]() |