-
Previous Article
Design of one type of linear network prediction controller for multi-agent system
- DCDS-S Home
- This Issue
-
Next Article
Tight independent set neighborhood union condition for fractional critical deleted graphs and ID deleted graphs
A real attractor non admitting a connected feasible open set
University Centre of Defence at the Spanish Air Force Academy, MDE-UPCT, 30720 Santiago de la Ribera, Murcia, Spain |
A self-similar set is described as the unique (nonempty) compact subset remaining invariant under the action of a finite collection of similitudes on a complete metric space. Among this kind of fractals, those satisfying the so-called Moran's open set condition are especially appropriate to deal with applications of Fractal Geometry since their Hausdorff dimensions can be easily computed. However, such a separation property depends on an external open set whose properties are not fully known. In this paper, we construct a self-similar set in the real line lying under the open set condition which does not admit a connected feasible open set. This answers an open question posed by Zhou and Li in 2009.
References:
[1] |
G. Cantor,
Ueber unendliche, lineare Punktmannichfaltigkeiten, Mathematische Annalen, 21 (1883), 545-591.
doi: 10.1007/BF01446819. |
[2] |
F. Hausdorff,
Dimension und äußeres Maß, Mathematische Annalen, 79 (1918), 157-179.
doi: 10.1007/BF01457179. |
[3] |
D. Hilbert,
Über die stetige Abbildung einer Line auf ein Flächenstück, Mathematische Annalen, 38 (1891), 459-460.
doi: 10.1007/BF01199431. |
[4] |
J. E. Hutchinson,
Fractals and self-similarity, Indiana University Mathematics Journal, 30 (1981), 713-747.
doi: 10.1512/iumj.1981.30.30055. |
[5] |
P. A. P. Moran,
Additive functions of intervals and Hausdorff measure, Mathematical Proceedings of the Cambridge Philosophical Society, 42 (1946), 15-23.
doi: 10.1017/S0305004100022684. |
[6] |
G. Peano,
Sur une courbe, qui remplit toute une aire plane, Mathematische Annalen, 36 (1890), 157-160.
doi: 10.1007/BF01199438. |
[7] |
A. Schief,
Separation properties for self-similar sets, Proceedings of the American Mathematical Society, 122 (1994), 111-115.
doi: 10.1090/S0002-9939-1994-1191872-1. |
[8] |
Z. Zhou and F. Li,
Some problems on fractal geometry and topological dynamical systems, Analysis in Theory and Applications, 25 (2009), 5-15.
doi: 10.1007/s10496-009-0005-3. |
show all references
References:
[1] |
G. Cantor,
Ueber unendliche, lineare Punktmannichfaltigkeiten, Mathematische Annalen, 21 (1883), 545-591.
doi: 10.1007/BF01446819. |
[2] |
F. Hausdorff,
Dimension und äußeres Maß, Mathematische Annalen, 79 (1918), 157-179.
doi: 10.1007/BF01457179. |
[3] |
D. Hilbert,
Über die stetige Abbildung einer Line auf ein Flächenstück, Mathematische Annalen, 38 (1891), 459-460.
doi: 10.1007/BF01199431. |
[4] |
J. E. Hutchinson,
Fractals and self-similarity, Indiana University Mathematics Journal, 30 (1981), 713-747.
doi: 10.1512/iumj.1981.30.30055. |
[5] |
P. A. P. Moran,
Additive functions of intervals and Hausdorff measure, Mathematical Proceedings of the Cambridge Philosophical Society, 42 (1946), 15-23.
doi: 10.1017/S0305004100022684. |
[6] |
G. Peano,
Sur une courbe, qui remplit toute une aire plane, Mathematische Annalen, 36 (1890), 157-160.
doi: 10.1007/BF01199438. |
[7] |
A. Schief,
Separation properties for self-similar sets, Proceedings of the American Mathematical Society, 122 (1994), 111-115.
doi: 10.1090/S0002-9939-1994-1191872-1. |
[8] |
Z. Zhou and F. Li,
Some problems on fractal geometry and topological dynamical systems, Analysis in Theory and Applications, 25 (2009), 5-15.
doi: 10.1007/s10496-009-0005-3. |
[1] |
Alexey Glutsyuk, Yury Kudryashov. No planar billiard possesses an open set of quadrilateral trajectories. Journal of Modern Dynamics, 2012, 6 (3) : 287-326. doi: 10.3934/jmd.2012.6.287 |
[2] |
Paul Wright. Differentiability of Hausdorff dimension of the non-wandering set in a planar open billiard. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3993-4014. doi: 10.3934/dcds.2016.36.3993 |
[3] |
Gilbert Strang. Three steps on an open road. Inverse Problems and Imaging, 2013, 7 (3) : 961-966. doi: 10.3934/ipi.2013.7.961 |
[4] |
Ernan Haruvy, Ashutosh Prasad, Suresh Sethi, Rong Zhang. Competition with open source as a public good. Journal of Industrial and Management Optimization, 2008, 4 (1) : 199-211. doi: 10.3934/jimo.2008.4.199 |
[5] |
Alexander Gorodnik. Open problems in dynamics and related fields. Journal of Modern Dynamics, 2007, 1 (1) : 1-35. doi: 10.3934/jmd.2007.1.1 |
[6] |
Koichi Osaki, Hirotoshi Satoh, Shigetoshi Yazaki. Towards modelling spiral motion of open plane curves. Discrete and Continuous Dynamical Systems - S, 2015, 8 (5) : 1009-1022. doi: 10.3934/dcdss.2015.8.1009 |
[7] |
Winfried Just. Approximating network dynamics: Some open problems. Discrete and Continuous Dynamical Systems - B, 2018, 23 (5) : 1917-1930. doi: 10.3934/dcdsb.2018188 |
[8] |
Natalia Ptitsyna, Stephen P. Shipman. A lattice model for resonance in open periodic waveguides. Discrete and Continuous Dynamical Systems - S, 2012, 5 (5) : 989-1020. doi: 10.3934/dcdss.2012.5.989 |
[9] |
Nadia Bedjaoui, Erik Weyer, Georges Bastin. Methods for the localization of a leak in open water channels. Networks and Heterogeneous Media, 2009, 4 (2) : 189-210. doi: 10.3934/nhm.2009.4.189 |
[10] |
Yakov Pesin, Vaughn Climenhaga. Open problems in the theory of non-uniform hyperbolicity. Discrete and Continuous Dynamical Systems, 2010, 27 (2) : 589-607. doi: 10.3934/dcds.2010.27.589 |
[11] |
Xavier Litrico, Vincent Fromion. Modal decomposition of linearized open channel flow. Networks and Heterogeneous Media, 2009, 4 (2) : 325-357. doi: 10.3934/nhm.2009.4.325 |
[12] |
Robert Lauter and Victor Nistor. On spectra of geometric operators on open manifolds and differentiable groupoids. Electronic Research Announcements, 2001, 7: 45-53. |
[13] |
Kevin G. Hare, Nikita Sidorov. Open maps: Small and large holes with unusual properties. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5883-5895. doi: 10.3934/dcds.2018255 |
[14] |
Maya Briani, Benedetto Piccoli. Fluvial to torrential phase transition in open canals. Networks and Heterogeneous Media, 2018, 13 (4) : 663-690. doi: 10.3934/nhm.2018030 |
[15] |
Anushaya Mohapatra, William Ott. Memory loss for nonequilibrium open dynamical systems. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3747-3759. doi: 10.3934/dcds.2014.34.3747 |
[16] |
Demetres D. Kouvatsos, Jumma S. Alanazi, Kevin Smith. A unified ME algorithm for arbitrary open QNMs with mixed blocking mechanisms. Numerical Algebra, Control and Optimization, 2011, 1 (4) : 781-816. doi: 10.3934/naco.2011.1.781 |
[17] |
Dean A. Carlson. Finding open-loop Nash equilibrium for variational games. Conference Publications, 2005, 2005 (Special) : 153-163. doi: 10.3934/proc.2005.2005.153 |
[18] |
S. Yu. Pilyugin, Kazuhiro Sakai, O. A. Tarakanov. Transversality properties and $C^1$-open sets of diffeomorphisms with weak shadowing. Discrete and Continuous Dynamical Systems, 2006, 16 (4) : 871-882. doi: 10.3934/dcds.2006.16.871 |
[19] |
Gary Froyland, Ognjen Stancevic. Escape rates and Perron-Frobenius operators: Open and closed dynamical systems. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 457-472. doi: 10.3934/dcdsb.2010.14.457 |
[20] |
Alain Bensoussan, Shaokuan Chen, Suresh P. Sethi. Linear quadratic differential games with mixed leadership: The open-loop solution. Numerical Algebra, Control and Optimization, 2013, 3 (1) : 95-108. doi: 10.3934/naco.2013.3.95 |
2021 Impact Factor: 1.865
Tools
Metrics
Other articles
by authors
[Back to Top]