A self-similar set is described as the unique (nonempty) compact subset remaining invariant under the action of a finite collection of similitudes on a complete metric space. Among this kind of fractals, those satisfying the so-called Moran's open set condition are especially appropriate to deal with applications of Fractal Geometry since their Hausdorff dimensions can be easily computed. However, such a separation property depends on an external open set whose properties are not fully known. In this paper, we construct a self-similar set in the real line lying under the open set condition which does not admit a connected feasible open set. This answers an open question posed by Zhou and Li in 2009.
Citation: |
G. Cantor
, Ueber unendliche, lineare Punktmannichfaltigkeiten, Mathematische Annalen, 21 (1883)
, 545-591.
doi: 10.1007/BF01446819.![]() ![]() ![]() |
|
F. Hausdorff
, Dimension und äußeres Maß, Mathematische Annalen, 79 (1918)
, 157-179.
doi: 10.1007/BF01457179.![]() ![]() ![]() |
|
D. Hilbert
, Über die stetige Abbildung einer Line auf ein Flächenstück, Mathematische Annalen, 38 (1891)
, 459-460.
doi: 10.1007/BF01199431.![]() ![]() ![]() |
|
J. E. Hutchinson
, Fractals and self-similarity, Indiana University Mathematics Journal, 30 (1981)
, 713-747.
doi: 10.1512/iumj.1981.30.30055.![]() ![]() ![]() |
|
P. A. P. Moran
, Additive functions of intervals and Hausdorff measure, Mathematical Proceedings of the Cambridge Philosophical Society, 42 (1946)
, 15-23.
doi: 10.1017/S0305004100022684.![]() ![]() ![]() |
|
G. Peano
, Sur une courbe, qui remplit toute une aire plane, Mathematische Annalen, 36 (1890)
, 157-160.
doi: 10.1007/BF01199438.![]() ![]() ![]() |
|
A. Schief
, Separation properties for self-similar sets, Proceedings of the American Mathematical Society, 122 (1994)
, 111-115.
doi: 10.1090/S0002-9939-1994-1191872-1.![]() ![]() ![]() |
|
Z. Zhou
and F. Li
, Some problems on fractal geometry and topological dynamical systems, Analysis in Theory and Applications, 25 (2009)
, 5-15.
doi: 10.1007/s10496-009-0005-3.![]() ![]() ![]() |