-
Previous Article
Design of one type of linear network prediction controller for multi-agent system
- DCDS-S Home
- This Issue
-
Next Article
Tight independent set neighborhood union condition for fractional critical deleted graphs and ID deleted graphs
A real attractor non admitting a connected feasible open set
University Centre of Defence at the Spanish Air Force Academy, MDE-UPCT, 30720 Santiago de la Ribera, Murcia, Spain |
A self-similar set is described as the unique (nonempty) compact subset remaining invariant under the action of a finite collection of similitudes on a complete metric space. Among this kind of fractals, those satisfying the so-called Moran's open set condition are especially appropriate to deal with applications of Fractal Geometry since their Hausdorff dimensions can be easily computed. However, such a separation property depends on an external open set whose properties are not fully known. In this paper, we construct a self-similar set in the real line lying under the open set condition which does not admit a connected feasible open set. This answers an open question posed by Zhou and Li in 2009.
References:
[1] |
G. Cantor,
Ueber unendliche, lineare Punktmannichfaltigkeiten, Mathematische Annalen, 21 (1883), 545-591.
doi: 10.1007/BF01446819. |
[2] |
F. Hausdorff,
Dimension und äußeres Maß, Mathematische Annalen, 79 (1918), 157-179.
doi: 10.1007/BF01457179. |
[3] |
D. Hilbert,
Über die stetige Abbildung einer Line auf ein Flächenstück, Mathematische Annalen, 38 (1891), 459-460.
doi: 10.1007/BF01199431. |
[4] |
J. E. Hutchinson,
Fractals and self-similarity, Indiana University Mathematics Journal, 30 (1981), 713-747.
doi: 10.1512/iumj.1981.30.30055. |
[5] |
P. A. P. Moran,
Additive functions of intervals and Hausdorff measure, Mathematical Proceedings of the Cambridge Philosophical Society, 42 (1946), 15-23.
doi: 10.1017/S0305004100022684. |
[6] |
G. Peano,
Sur une courbe, qui remplit toute une aire plane, Mathematische Annalen, 36 (1890), 157-160.
doi: 10.1007/BF01199438. |
[7] |
A. Schief,
Separation properties for self-similar sets, Proceedings of the American Mathematical Society, 122 (1994), 111-115.
doi: 10.1090/S0002-9939-1994-1191872-1. |
[8] |
Z. Zhou and F. Li,
Some problems on fractal geometry and topological dynamical systems, Analysis in Theory and Applications, 25 (2009), 5-15.
doi: 10.1007/s10496-009-0005-3. |
show all references
References:
[1] |
G. Cantor,
Ueber unendliche, lineare Punktmannichfaltigkeiten, Mathematische Annalen, 21 (1883), 545-591.
doi: 10.1007/BF01446819. |
[2] |
F. Hausdorff,
Dimension und äußeres Maß, Mathematische Annalen, 79 (1918), 157-179.
doi: 10.1007/BF01457179. |
[3] |
D. Hilbert,
Über die stetige Abbildung einer Line auf ein Flächenstück, Mathematische Annalen, 38 (1891), 459-460.
doi: 10.1007/BF01199431. |
[4] |
J. E. Hutchinson,
Fractals and self-similarity, Indiana University Mathematics Journal, 30 (1981), 713-747.
doi: 10.1512/iumj.1981.30.30055. |
[5] |
P. A. P. Moran,
Additive functions of intervals and Hausdorff measure, Mathematical Proceedings of the Cambridge Philosophical Society, 42 (1946), 15-23.
doi: 10.1017/S0305004100022684. |
[6] |
G. Peano,
Sur une courbe, qui remplit toute une aire plane, Mathematische Annalen, 36 (1890), 157-160.
doi: 10.1007/BF01199438. |
[7] |
A. Schief,
Separation properties for self-similar sets, Proceedings of the American Mathematical Society, 122 (1994), 111-115.
doi: 10.1090/S0002-9939-1994-1191872-1. |
[8] |
Z. Zhou and F. Li,
Some problems on fractal geometry and topological dynamical systems, Analysis in Theory and Applications, 25 (2009), 5-15.
doi: 10.1007/s10496-009-0005-3. |
[1] |
Demetres D. Kouvatsos, Jumma S. Alanazi, Kevin Smith. A unified ME algorithm for arbitrary open QNMs with mixed blocking mechanisms. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 781-816. doi: 10.3934/naco.2011.1.781 |
[2] |
Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243 |
[3] |
Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233 |
[4] |
Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397 |
[5] |
Mansour Shrahili, Ravi Shanker Dubey, Ahmed Shafay. Inclusion of fading memory to Banister model of changes in physical condition. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 881-888. doi: 10.3934/dcdss.2020051 |
[6] |
Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223 |
[7] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
2019 Impact Factor: 1.233
Tools
Article outline
[Back to Top]