
-
Previous Article
Collaborative filtering recommendation algorithm towards intelligent community
- DCDS-S Home
- This Issue
-
Next Article
On the design of full duplex wireless system with chaotic sequences
Total factor productivity growth and technological change in the telecommunications industry
School of Economics and Management, Beijing University of Posts and Telecommunications, No.10 Xi Tu Cheng Road, Haidian District, Beijing 100876, China |
The fast growing telecommunications industry in China has been experiencing dramatic technological change and substantial productivity growth. The actual productivity growth pattern in the sector, however, need to be empirically examined. In this paper, using input and output data at the provincial level, we employ DEA-based Malmquist productivity index to estimate productivity change, technological change and relative efficiency change in China's telecommunications industry for the period spanning the years from 2011 to 2015. The results show that based on our sample, the productivity improved by 22.9% per annum, which was exclusively due to an average of 25.5% technological progress in the industry production function, while the average efficiency change is slightly negative. Our results also indicate that regions with relatively low levels of telecommunications (and economic) development have a greater chance and ability of enhancing telecommunications productivity growth through technological catch-up. In addition, we find that the industry experienced significantly higher productivity growth and technological progress in the later sample period between 2013 and 2015 than in the early period between 2011 and 2013.
References:
[1] |
M. Abramovitz, Resource and output trends in the united states since 1870, in Resource and Output Trends in the United States Since 1870, NBER, 1956, 1–23. Google Scholar |
[2] |
R. D. Banker, Z. Cao, N. Menon and R. Natarajan, Technological progress and productivity growth in the us mobile telecommunications industry, Annals of Operations Research, 173 (2010), 77-87. Google Scholar |
[3] |
M. Calvo, J. I. M. Torcal and L. R. García, A new stepsize change technique for adams methods, Applied Mathematics and Nonlinear Sciences, 1 (2016), 547-558. Google Scholar |
[4] |
D. W. Caves, L. R. Christensen and W. E. Diewert, The economic theory of index numbers and the measurement of input, output, and productivity, Econometrica: Journal of the Econometric Society, 1393–1414. Google Scholar |
[5] |
A. Charnes, W. W. Cooper and E. Rhodes,
Measuring the efficiency of decision making units, European Journal of Operational Research, 2 (1978), 429-444.
doi: 10.1016/0377-2217(78)90138-8. |
[6] |
H. W. Chesbrough and D. J. Teece, When is virtual virtuous, Harvard Business Review, 74 (1996), 65-73. Google Scholar |
[7] |
T. Coelli, A guide to deap version 2.1: A data envelopment analysis (computer) program, Centre for Efficiency and Productivity Analysis, University of New England, Australia. Google Scholar |
[8] |
L. Correa, The economic impact of telecommunications diffusion on uk productivity growth, Information Economics and Policy, 18 (2006), 385-404. Google Scholar |
[9] |
A. Datta and S. Agarwal, Telecommunications and economic growth: A panel data approach, Applied Economics, 36 (2004), 1649-1654. Google Scholar |
[10] |
M. Denny, M. A. Fuss and L. Waverman, The Measurement and Interpretation of Total Factor Productivity in Regulated Industries, with an Application to Canadian Telecommunications, Institute for Policy Analysis, University of Toronto, 1979. Google Scholar |
[11] |
W. E. Diewert,
Exact and superlative index numbers, Journal of Econometrics, 4 (1976), 115-145.
doi: 10.1016/0304-4076(76)90009-9. |
[12] |
A. Dutta, Telecommunications and economic activity: An analysis of granger causality, Journal of Management Information Systems, 17 (2001), 71-95. Google Scholar |
[13] |
R. Färe and S. Grosskopf, Malmquist productivity indexes and fisher ideal indexes, The Economic Journal, 102 (1992), 158-160. Google Scholar |
[14] |
R. Färe, S. Grosskopf, M. Norris and Z. Zhang, Productivity growth, technical progress, and efficiency change in industrialized countries, The American economic review, (), 66-83. Google Scholar |
[15] |
R. Färe, S. Grosskopf and P. Roos, Productivity and quality changes in swedish pharmacies, International Journal of Production Economics, 39 (1995), 137-144. Google Scholar |
[16] |
Y. Gao, M. Farahani and W. Gao, Ontology optimization tactics via distance calculating, Applied Mathematics and Nonlinear Sciences, 1 (2016), 154-169. Google Scholar |
[17] |
D. I. Giokas and G. C. Pentzaropoulos, Evaluating productive efficiency in telecommunications: Evidence from greece, Telecommunications Policy, 24 (2000), 781-794. Google Scholar |
[18] |
J. A. Hausman and W. E. Taylor, Partial deregulation in telecommunications: An update, Journal of Competition Law and Economics. Google Scholar |
[19] |
E. Hisali and B. Yawe, Total factor productivity growth in uganda's telecommunications industry, Telecommunications Policy, 35 (2011), 12-19. Google Scholar |
[20] |
H. Kang, Technology management in services: Knowledge-based vs. knowledge-embedded services, Strategic Change, 15 (2006), 67-74. Google Scholar |
[21] |
F. Kiss, Productivity gains in bell canada, Economic Analysis of Telecommunications: Theory and Applications, Amsterdam: North-Holland. Google Scholar |
[22] |
J.-J. Laffont and J. Tirole, Competition in Telecommunications, MIT press, 2001. Google Scholar |
[23] |
P. Lall, A. M. Featherstone and D. W. Norman, Productivity growth in the western hemisphere (1978-94): The caribbean in perspective, Journal of Productivity Analysis, 17 (2002), 213-231. Google Scholar |
[24] |
P.-L. Lam and T. Lam, Total factor productivity measures for hong kong telephone, Telecommunications Policy, 29 (2005), 53-68. Google Scholar |
[25] |
P.-L. Lam and A. Shiu, Productivity analysis of the telecommunications sector in China, Telecommunications Policy, 32 (2008), 559-571. Google Scholar |
[26] |
D. Lien and Y. Peng, Competition and production efficiency: Telecommunications in oecd countries, Information Economics and Policy, 13 (2001), 51-76. Google Scholar |
[27] |
G. Madden and S. J. Savage, Telecommunications productivity, catch-up and innovation, Telecommunications Policy, 23 (1999), 65-81. Google Scholar |
[28] |
S. K. Majumdar, Does new technology adoption pay? electronic switching patterns and firm-level performance in us telecommunications, Research Policy, 24 (1995), 803-822. Google Scholar |
[29] |
S. Malmquist,
Index numbers and indifference surfaces, Trabajos de Estadística, 4 (1953), 209-242.
doi: 10.1007/BF03006863. |
[30] |
MIIT, Statistical bulletin of china's telecommunications industry in 2016, http://www.miit.gov.cn/n1146290/n1146402/n1146455/c5471508/content.html. Google Scholar |
[31] |
M. I. Nadiri and M. Schankerman, The structure of production, technological change, and the rate of growth of total factor productivity in the bell system, 1979. Google Scholar |
[32] |
M. Nishimizu and J. M. Page, Total factor productivity growth, technological progress and technical efficiency change: dimensions of productivity change in yugoslavia, 1965-78, The Economic Journal, 92 (1982), 920–936. Google Scholar |
[33] |
H. Oniki, T. H. Oum, R. Stevenson and Y. Zhang, The productivity effects of the liberalization of japanese telecommunication policy, Journal of Productivity Analysis, 5 (1994), 63-79. Google Scholar |
[34] |
J. B. Quinn and M. N. Baily, Information technology: Increasing productivity in services, The Academy of Management Executive, 8 (1994), 28-48. Google Scholar |
[35] |
R. W. Shepherd,
Theory of Cost and Production Functions, Princeton University Press, 1970. |
[36] |
N. D. Uri, Measuring productivity change in telecommunications, Telecommunications Policy, 24 (2000), 439-452. Google Scholar |
[37] |
N. D. Uri, Productivity change, technical progress, and efficiency improvement in telecommunications, Review of Industrial Organization, 18 (2001), 283-300. Google Scholar |
[38] |
C.-H. Yoon, Liberalisation policy, industry structure and productivity changes in korea's telecommunications industry, Telecommunications Policy, 23 (1999), 289-306. Google Scholar |
show all references
References:
[1] |
M. Abramovitz, Resource and output trends in the united states since 1870, in Resource and Output Trends in the United States Since 1870, NBER, 1956, 1–23. Google Scholar |
[2] |
R. D. Banker, Z. Cao, N. Menon and R. Natarajan, Technological progress and productivity growth in the us mobile telecommunications industry, Annals of Operations Research, 173 (2010), 77-87. Google Scholar |
[3] |
M. Calvo, J. I. M. Torcal and L. R. García, A new stepsize change technique for adams methods, Applied Mathematics and Nonlinear Sciences, 1 (2016), 547-558. Google Scholar |
[4] |
D. W. Caves, L. R. Christensen and W. E. Diewert, The economic theory of index numbers and the measurement of input, output, and productivity, Econometrica: Journal of the Econometric Society, 1393–1414. Google Scholar |
[5] |
A. Charnes, W. W. Cooper and E. Rhodes,
Measuring the efficiency of decision making units, European Journal of Operational Research, 2 (1978), 429-444.
doi: 10.1016/0377-2217(78)90138-8. |
[6] |
H. W. Chesbrough and D. J. Teece, When is virtual virtuous, Harvard Business Review, 74 (1996), 65-73. Google Scholar |
[7] |
T. Coelli, A guide to deap version 2.1: A data envelopment analysis (computer) program, Centre for Efficiency and Productivity Analysis, University of New England, Australia. Google Scholar |
[8] |
L. Correa, The economic impact of telecommunications diffusion on uk productivity growth, Information Economics and Policy, 18 (2006), 385-404. Google Scholar |
[9] |
A. Datta and S. Agarwal, Telecommunications and economic growth: A panel data approach, Applied Economics, 36 (2004), 1649-1654. Google Scholar |
[10] |
M. Denny, M. A. Fuss and L. Waverman, The Measurement and Interpretation of Total Factor Productivity in Regulated Industries, with an Application to Canadian Telecommunications, Institute for Policy Analysis, University of Toronto, 1979. Google Scholar |
[11] |
W. E. Diewert,
Exact and superlative index numbers, Journal of Econometrics, 4 (1976), 115-145.
doi: 10.1016/0304-4076(76)90009-9. |
[12] |
A. Dutta, Telecommunications and economic activity: An analysis of granger causality, Journal of Management Information Systems, 17 (2001), 71-95. Google Scholar |
[13] |
R. Färe and S. Grosskopf, Malmquist productivity indexes and fisher ideal indexes, The Economic Journal, 102 (1992), 158-160. Google Scholar |
[14] |
R. Färe, S. Grosskopf, M. Norris and Z. Zhang, Productivity growth, technical progress, and efficiency change in industrialized countries, The American economic review, (), 66-83. Google Scholar |
[15] |
R. Färe, S. Grosskopf and P. Roos, Productivity and quality changes in swedish pharmacies, International Journal of Production Economics, 39 (1995), 137-144. Google Scholar |
[16] |
Y. Gao, M. Farahani and W. Gao, Ontology optimization tactics via distance calculating, Applied Mathematics and Nonlinear Sciences, 1 (2016), 154-169. Google Scholar |
[17] |
D. I. Giokas and G. C. Pentzaropoulos, Evaluating productive efficiency in telecommunications: Evidence from greece, Telecommunications Policy, 24 (2000), 781-794. Google Scholar |
[18] |
J. A. Hausman and W. E. Taylor, Partial deregulation in telecommunications: An update, Journal of Competition Law and Economics. Google Scholar |
[19] |
E. Hisali and B. Yawe, Total factor productivity growth in uganda's telecommunications industry, Telecommunications Policy, 35 (2011), 12-19. Google Scholar |
[20] |
H. Kang, Technology management in services: Knowledge-based vs. knowledge-embedded services, Strategic Change, 15 (2006), 67-74. Google Scholar |
[21] |
F. Kiss, Productivity gains in bell canada, Economic Analysis of Telecommunications: Theory and Applications, Amsterdam: North-Holland. Google Scholar |
[22] |
J.-J. Laffont and J. Tirole, Competition in Telecommunications, MIT press, 2001. Google Scholar |
[23] |
P. Lall, A. M. Featherstone and D. W. Norman, Productivity growth in the western hemisphere (1978-94): The caribbean in perspective, Journal of Productivity Analysis, 17 (2002), 213-231. Google Scholar |
[24] |
P.-L. Lam and T. Lam, Total factor productivity measures for hong kong telephone, Telecommunications Policy, 29 (2005), 53-68. Google Scholar |
[25] |
P.-L. Lam and A. Shiu, Productivity analysis of the telecommunications sector in China, Telecommunications Policy, 32 (2008), 559-571. Google Scholar |
[26] |
D. Lien and Y. Peng, Competition and production efficiency: Telecommunications in oecd countries, Information Economics and Policy, 13 (2001), 51-76. Google Scholar |
[27] |
G. Madden and S. J. Savage, Telecommunications productivity, catch-up and innovation, Telecommunications Policy, 23 (1999), 65-81. Google Scholar |
[28] |
S. K. Majumdar, Does new technology adoption pay? electronic switching patterns and firm-level performance in us telecommunications, Research Policy, 24 (1995), 803-822. Google Scholar |
[29] |
S. Malmquist,
Index numbers and indifference surfaces, Trabajos de Estadística, 4 (1953), 209-242.
doi: 10.1007/BF03006863. |
[30] |
MIIT, Statistical bulletin of china's telecommunications industry in 2016, http://www.miit.gov.cn/n1146290/n1146402/n1146455/c5471508/content.html. Google Scholar |
[31] |
M. I. Nadiri and M. Schankerman, The structure of production, technological change, and the rate of growth of total factor productivity in the bell system, 1979. Google Scholar |
[32] |
M. Nishimizu and J. M. Page, Total factor productivity growth, technological progress and technical efficiency change: dimensions of productivity change in yugoslavia, 1965-78, The Economic Journal, 92 (1982), 920–936. Google Scholar |
[33] |
H. Oniki, T. H. Oum, R. Stevenson and Y. Zhang, The productivity effects of the liberalization of japanese telecommunication policy, Journal of Productivity Analysis, 5 (1994), 63-79. Google Scholar |
[34] |
J. B. Quinn and M. N. Baily, Information technology: Increasing productivity in services, The Academy of Management Executive, 8 (1994), 28-48. Google Scholar |
[35] |
R. W. Shepherd,
Theory of Cost and Production Functions, Princeton University Press, 1970. |
[36] |
N. D. Uri, Measuring productivity change in telecommunications, Telecommunications Policy, 24 (2000), 439-452. Google Scholar |
[37] |
N. D. Uri, Productivity change, technical progress, and efficiency improvement in telecommunications, Review of Industrial Organization, 18 (2001), 283-300. Google Scholar |
[38] |
C.-H. Yoon, Liberalisation policy, industry structure and productivity changes in korea's telecommunications industry, Telecommunications Policy, 23 (1999), 289-306. Google Scholar |

DMU | GRP (billion yuan) | Population (million) | Per capita GRP(yuan) | Pr1 | Pr2 | Pr3 |
Eastern region | ||||||
Beijing | 2301 | 21.7 | 106009 | 36.2 | 181.7 | 76.5 |
Tianjin | 1654 | 15.5 | 76178 | 22.2 | 88.5 | 63 |
Liaoning | 2867 | 43.8 | 132054 | 23.7 | 97.9 | 62.2 |
Shanghai | 2512 | 24.2 | 115723 | 33 | 129.7 | 73.1 |
Jiangsu | 7012 | 79.8 | 322968 | 24.7 | 100.2 | 55.5 |
Zhejiang | 4289 | 55.4 | 197543 | 26.6 | 131.5 | 65.3 |
Fujian | 2598 | 38.4 | 119668 | 23.2 | 108.2 | 69.6 |
Shandong | 6300 | 98.5 | 290200 | 11.4 | 92.3 | 48.9 |
Guangdong | 7281 | 108.5 | 335387 | 25.9 | 133.5 | 72.4 |
Hainan | 370 | 9.1 | 17056 | 18.8 | 98.2 | 51.6 |
Whole region | 37185 | 495 | 75157 | 24.5 | 116.2 | 63.8 |
Central region | ||||||
Hebei | 2981 | 74.3 | 137292 | 13.2 | 82.6 | 50.5 |
Shanxi | 1277 | 36.6 | 58805 | 12.1 | 88.5 | 54.2 |
Jilin | 1406 | 27.5 | 64777 | 20.8 | 91.2 | 47.7 |
Heilongjiang | 1508 | 38.1 | 69478 | 15.6 | 87.4 | 44.5 |
Anhui | 2201 | 61.4 | 101362 | 12 | 68.2 | 39.4 |
Jiangxi | 1672 | 45.7 | 77033 | 12.5 | 66.4 | 38.7 |
Henan | 3700 | 94.8 | 170438 | 10.7 | 79.5 | 39.2 |
Hubei | 2955 | 58.5 | 136113 | 14.9 | 77.4 | 46.8 |
Hunan | 2890 | 67.8 | 133129 | 11.6 | 69.2 | 39.9 |
Whole region | 20590 | 505 | 40790 | 14 | 79 | 45 |
Western region | ||||||
Inner Mongolia | 1783 | 25.1 | 82135 | 12.9 | 94.7 | 50.3 |
Guangxi | 1680 | 48 | 77398 | 9.2 | 75 | 42.8 |
Chongqing | 1572 | 30.2 | 72396 | 18.6 | 90.8 | 48.3 |
Sichuan | 3005 | 82 | 138430 | 16.5 | 82.9 | 40 |
Guizhou | 1050 | 35.3 | 48377 | 8.9 | 83.3 | 38.4 |
Yunnan | 1362 | 47.4 | 62732 | 8 | 78.9 | 37.4 |
Tibet | 103 | 3.2 | 4728 | 10.8 | 82.9 | 44.6 |
Shanxi | 1277 | 36.6 | 58805 | 12.1 | 88.5 | 54.2 |
Gansu | 679 | 26 | 31277 | 12.5 | 81 | 38.8 |
Qinghai | 242 | 5.9 | 11133 | 17.7 | 87.9 | 54.5 |
Ningxia | 291 | 6.7 | 13412 | 12.6 | 95.3 | 49.3 |
Xinjiang | 932 | 23.6 | 42952 | 21.2 | 86 | 54.9 |
Whole region | 13976 | 370 | 37770 | 13.4 | 85.6 | 46.1 |
Whole country | 71751 | 1370 | 52389 | 17.1 | 93.5 | 51.4 |
Note: DMU = Decision-making unit, GRP = Gross regional product, Pr1 = Fixed-line penetration rate(per 100 persons), Pr2 = Mobile penetration rate(per 100 persons), Pr3 = Internet penetration rate(%). Source: China Statistical Yearbook 2016. |
DMU | GRP (billion yuan) | Population (million) | Per capita GRP(yuan) | Pr1 | Pr2 | Pr3 |
Eastern region | ||||||
Beijing | 2301 | 21.7 | 106009 | 36.2 | 181.7 | 76.5 |
Tianjin | 1654 | 15.5 | 76178 | 22.2 | 88.5 | 63 |
Liaoning | 2867 | 43.8 | 132054 | 23.7 | 97.9 | 62.2 |
Shanghai | 2512 | 24.2 | 115723 | 33 | 129.7 | 73.1 |
Jiangsu | 7012 | 79.8 | 322968 | 24.7 | 100.2 | 55.5 |
Zhejiang | 4289 | 55.4 | 197543 | 26.6 | 131.5 | 65.3 |
Fujian | 2598 | 38.4 | 119668 | 23.2 | 108.2 | 69.6 |
Shandong | 6300 | 98.5 | 290200 | 11.4 | 92.3 | 48.9 |
Guangdong | 7281 | 108.5 | 335387 | 25.9 | 133.5 | 72.4 |
Hainan | 370 | 9.1 | 17056 | 18.8 | 98.2 | 51.6 |
Whole region | 37185 | 495 | 75157 | 24.5 | 116.2 | 63.8 |
Central region | ||||||
Hebei | 2981 | 74.3 | 137292 | 13.2 | 82.6 | 50.5 |
Shanxi | 1277 | 36.6 | 58805 | 12.1 | 88.5 | 54.2 |
Jilin | 1406 | 27.5 | 64777 | 20.8 | 91.2 | 47.7 |
Heilongjiang | 1508 | 38.1 | 69478 | 15.6 | 87.4 | 44.5 |
Anhui | 2201 | 61.4 | 101362 | 12 | 68.2 | 39.4 |
Jiangxi | 1672 | 45.7 | 77033 | 12.5 | 66.4 | 38.7 |
Henan | 3700 | 94.8 | 170438 | 10.7 | 79.5 | 39.2 |
Hubei | 2955 | 58.5 | 136113 | 14.9 | 77.4 | 46.8 |
Hunan | 2890 | 67.8 | 133129 | 11.6 | 69.2 | 39.9 |
Whole region | 20590 | 505 | 40790 | 14 | 79 | 45 |
Western region | ||||||
Inner Mongolia | 1783 | 25.1 | 82135 | 12.9 | 94.7 | 50.3 |
Guangxi | 1680 | 48 | 77398 | 9.2 | 75 | 42.8 |
Chongqing | 1572 | 30.2 | 72396 | 18.6 | 90.8 | 48.3 |
Sichuan | 3005 | 82 | 138430 | 16.5 | 82.9 | 40 |
Guizhou | 1050 | 35.3 | 48377 | 8.9 | 83.3 | 38.4 |
Yunnan | 1362 | 47.4 | 62732 | 8 | 78.9 | 37.4 |
Tibet | 103 | 3.2 | 4728 | 10.8 | 82.9 | 44.6 |
Shanxi | 1277 | 36.6 | 58805 | 12.1 | 88.5 | 54.2 |
Gansu | 679 | 26 | 31277 | 12.5 | 81 | 38.8 |
Qinghai | 242 | 5.9 | 11133 | 17.7 | 87.9 | 54.5 |
Ningxia | 291 | 6.7 | 13412 | 12.6 | 95.3 | 49.3 |
Xinjiang | 932 | 23.6 | 42952 | 21.2 | 86 | 54.9 |
Whole region | 13976 | 370 | 37770 | 13.4 | 85.6 | 46.1 |
Whole country | 71751 | 1370 | 52389 | 17.1 | 93.5 | 51.4 |
Note: DMU = Decision-making unit, GRP = Gross regional product, Pr1 = Fixed-line penetration rate(per 100 persons), Pr2 = Mobile penetration rate(per 100 persons), Pr3 = Internet penetration rate(%). Source: China Statistical Yearbook 2016. |
Telecom revenue(million) | Labour (person) | Cap 1 | Cap 2 | Cap 3 | Cap 4 | |
2011 | ||||||
Mean | 37825 | 48776 | 390945 | 515413 | 14009 | 55366 |
Median | 30775 | 43488 | 378032 | 433175 | 12154 | 44740 |
S.D. | 30489 | 32707 | 254058 | 503184 | 10424 | 39246 |
Minimum | 2386 | 1090 | 50642 | 34540 | 1270 | 2300 |
Maximum | 161716 | 152384 | 1162101 | 2644348 | 47815 | 190767 |
2012 | ||||||
Mean | 41879 | 49125 | 477203 | 508122 | 14112 | 59363 |
Median | 34519 | 43579 | 441060 | 411477 | 11902 | 49244 |
S.D. | 33254 | 32550 | 325007 | 497595 | 9840 | 42026 |
Minimum | 3301 | 1090 | 63145 | 34540 | 1336 | 3420 |
Maximum | 176638 | 152293 | 1567817 | 2587636 | 43606 | 203926 |
2013 | ||||||
Mean | 50668 | 49600 | 563023 | 411595 | 13254 | 63406 |
Median | 42938 | 44245 | 505633 | 342237 | 10255 | 52558 |
S.D. | 40798 | 32412 | 372801 | 301962 | 9135 | 43518 |
Minimum | 3965 | 1308 | 74047 | 16620 | 1337 | 3930 |
Maximum | 217609 | 151377 | 1735687 | 1446394 | 40865 | 211481 |
2014 | ||||||
Mean | 58511 | 50493 | 664920 | 315595 | 13069 | 66137 |
Median | 52066 | 44681 | 584039 | 224364 | 8907 | 58580 |
S.D. | 47187 | 33387 | 463481 | 281664 | 13534 | 44984 |
Minimum | 4543 | 1635 | 88892 | 14310 | 536 | 3930 |
Maximum | 249354 | 155175 | 2081008 | 1337449 | 74018 | 214181 |
2015 | ||||||
Mean | 75311 | 50079 | 802043 | 268276 | 8530 | 70371 |
Median | 69949 | 44354 | 656959 | 207480 | 7204 | 58941 |
S.D. | 60863 | 32599 | 570614 | 209756 | 6017 | 47591 |
Minimum | 5379 | 1617 | 115695 | 12870 | 115 | 4480 |
Maximum | 315003 | 150432 | 2511543 | 851520 | 28447 | 220258 |
Note: Cap 1 = the length of optical cable lines (in kilometres); Cap 2 = the capacity of long-distance telephone exchanges(in circuits); Cap 3 = the capacity of local office telephone exchanges(in thousand exchange lines); Cap 4 = the capacity of mobile telephone exchanges(in thousand subscribers). |
Telecom revenue(million) | Labour (person) | Cap 1 | Cap 2 | Cap 3 | Cap 4 | |
2011 | ||||||
Mean | 37825 | 48776 | 390945 | 515413 | 14009 | 55366 |
Median | 30775 | 43488 | 378032 | 433175 | 12154 | 44740 |
S.D. | 30489 | 32707 | 254058 | 503184 | 10424 | 39246 |
Minimum | 2386 | 1090 | 50642 | 34540 | 1270 | 2300 |
Maximum | 161716 | 152384 | 1162101 | 2644348 | 47815 | 190767 |
2012 | ||||||
Mean | 41879 | 49125 | 477203 | 508122 | 14112 | 59363 |
Median | 34519 | 43579 | 441060 | 411477 | 11902 | 49244 |
S.D. | 33254 | 32550 | 325007 | 497595 | 9840 | 42026 |
Minimum | 3301 | 1090 | 63145 | 34540 | 1336 | 3420 |
Maximum | 176638 | 152293 | 1567817 | 2587636 | 43606 | 203926 |
2013 | ||||||
Mean | 50668 | 49600 | 563023 | 411595 | 13254 | 63406 |
Median | 42938 | 44245 | 505633 | 342237 | 10255 | 52558 |
S.D. | 40798 | 32412 | 372801 | 301962 | 9135 | 43518 |
Minimum | 3965 | 1308 | 74047 | 16620 | 1337 | 3930 |
Maximum | 217609 | 151377 | 1735687 | 1446394 | 40865 | 211481 |
2014 | ||||||
Mean | 58511 | 50493 | 664920 | 315595 | 13069 | 66137 |
Median | 52066 | 44681 | 584039 | 224364 | 8907 | 58580 |
S.D. | 47187 | 33387 | 463481 | 281664 | 13534 | 44984 |
Minimum | 4543 | 1635 | 88892 | 14310 | 536 | 3930 |
Maximum | 249354 | 155175 | 2081008 | 1337449 | 74018 | 214181 |
2015 | ||||||
Mean | 75311 | 50079 | 802043 | 268276 | 8530 | 70371 |
Median | 69949 | 44354 | 656959 | 207480 | 7204 | 58941 |
S.D. | 60863 | 32599 | 570614 | 209756 | 6017 | 47591 |
Minimum | 5379 | 1617 | 115695 | 12870 | 115 | 4480 |
Maximum | 315003 | 150432 | 2511543 | 851520 | 28447 | 220258 |
Note: Cap 1 = the length of optical cable lines (in kilometres); Cap 2 = the capacity of long-distance telephone exchanges(in circuits); Cap 3 = the capacity of local office telephone exchanges(in thousand exchange lines); Cap 4 = the capacity of mobile telephone exchanges(in thousand subscribers). |
DMU | Annual averages (2011-2015) | ||||
EffCh | TechCh | PEffCh | SEffCh | TFPCh | |
Eastern region | |||||
Beijing | 1.000 | 1.110 | 1.000 | 1.000 | 1.110 |
Tianjin | 0.919 | 1.158 | 0.986 | 0.932 | 1.064 |
Liaoning | 0.872 | 1.175 | 0.871 | 1.001 | 1.025 |
Shanghai | 0.998 | 1.137 | 0.999 | 0.999 | 1.134 |
Jiangsu | 1.003 | 1.246 | 1.000 | 1.003 | 1.250 |
Zhejian | 1.000 | 1.218 | 1.000 | 1.000 | 1.218 |
Fujian | 1.019 | 1.289 | 1.017 | 1.002 | 1.314 |
Shandong | 0.935 | 1.235 | 0.936 | 0.999 | 1.155 |
Guangdong | 1.000 | 1.209 | 1.000 | 1.000 | 1.209 |
Hainan | 1.016 | 1.309 | 1.000 | 1.016 | 1.330 |
Central region | |||||
Hebei | 0.921 | 1.221 | 0.924 | 0.996 | 1.124 |
Shanxi | 0.929 | 1.272 | 0.931 | 0.998 | 1.182 |
Jilin | 0.946 | 1.260 | 0.952 | 0.994 | 1.191 |
Heilongjiang | 0.888 | 1.177 | 0.899 | 0.988 | 1.045 |
Anhui | 1.040 | 1.360 | 1.068 | 0.974 | 1.415 |
Jiangxi | 0.993 | 1.234 | 0.992 | 1.001 | 1.225 |
Henan | 0.987 | 1.289 | 1.014 | 0.973 | 1.272 |
Hubei | 0.996 | 1.296 | 1.003 | 0.993 | 1.291 |
Hunan | 0.958 | 1.266 | 0.957 | 1.001 | 1.213 |
Western region | |||||
Inner Mongolia | 0.914 | 1.349 | 0.930 | 0.983 | 1.232 |
Guangxi | 0.972 | 1.137 | 0.969 | 1.003 | 1.105 |
Chongqing | 1.017 | 1.337 | 1.015 | 1.002 | 1.361 |
Sichuan | 0.963 | 1.371 | 1.000 | 0.963 | 1.320 |
Guizhou | 1.061 | 1.166 | 1.060 | 1.001 | 1.237 |
Yunnan | 1.009 | 1.274 | 1.009 | 1.001 | 1.285 |
Tibet | 1.000 | 1.351 | 1.000 | 1.000 | 1.351 |
Shanxi | 1.016 | 1.268 | 1.022 | 0.994 | 1.288 |
Gansu | 1.043 | 1.291 | 1.060 | 0.984 | 1.347 |
Qinghai | 1.043 | 1.439 | 1.000 | 1.043 | 1.501 |
Ningxia | 1.006 | 1.259 | 1.000 | 1.006 | 1.266 |
Xinjiang | 0.932 | 1.275 | 0.947 | 0.983 | 1.188 |
Eastern region | 0.975 | 1.207 | 0.980 | 0.995 | 1.177 |
Central region | 0.961 | 1.263 | 0.970 | 0.991 | 1.214 |
Western region | 0.997 | 1.291 | 1.000 | 0.997 | 1.287 |
All regions | 0.979 | 1.255 | 0.985 | 0.994 | 1.229 |
DMU | Annual averages (2011-2015) | ||||
EffCh | TechCh | PEffCh | SEffCh | TFPCh | |
Eastern region | |||||
Beijing | 1.000 | 1.110 | 1.000 | 1.000 | 1.110 |
Tianjin | 0.919 | 1.158 | 0.986 | 0.932 | 1.064 |
Liaoning | 0.872 | 1.175 | 0.871 | 1.001 | 1.025 |
Shanghai | 0.998 | 1.137 | 0.999 | 0.999 | 1.134 |
Jiangsu | 1.003 | 1.246 | 1.000 | 1.003 | 1.250 |
Zhejian | 1.000 | 1.218 | 1.000 | 1.000 | 1.218 |
Fujian | 1.019 | 1.289 | 1.017 | 1.002 | 1.314 |
Shandong | 0.935 | 1.235 | 0.936 | 0.999 | 1.155 |
Guangdong | 1.000 | 1.209 | 1.000 | 1.000 | 1.209 |
Hainan | 1.016 | 1.309 | 1.000 | 1.016 | 1.330 |
Central region | |||||
Hebei | 0.921 | 1.221 | 0.924 | 0.996 | 1.124 |
Shanxi | 0.929 | 1.272 | 0.931 | 0.998 | 1.182 |
Jilin | 0.946 | 1.260 | 0.952 | 0.994 | 1.191 |
Heilongjiang | 0.888 | 1.177 | 0.899 | 0.988 | 1.045 |
Anhui | 1.040 | 1.360 | 1.068 | 0.974 | 1.415 |
Jiangxi | 0.993 | 1.234 | 0.992 | 1.001 | 1.225 |
Henan | 0.987 | 1.289 | 1.014 | 0.973 | 1.272 |
Hubei | 0.996 | 1.296 | 1.003 | 0.993 | 1.291 |
Hunan | 0.958 | 1.266 | 0.957 | 1.001 | 1.213 |
Western region | |||||
Inner Mongolia | 0.914 | 1.349 | 0.930 | 0.983 | 1.232 |
Guangxi | 0.972 | 1.137 | 0.969 | 1.003 | 1.105 |
Chongqing | 1.017 | 1.337 | 1.015 | 1.002 | 1.361 |
Sichuan | 0.963 | 1.371 | 1.000 | 0.963 | 1.320 |
Guizhou | 1.061 | 1.166 | 1.060 | 1.001 | 1.237 |
Yunnan | 1.009 | 1.274 | 1.009 | 1.001 | 1.285 |
Tibet | 1.000 | 1.351 | 1.000 | 1.000 | 1.351 |
Shanxi | 1.016 | 1.268 | 1.022 | 0.994 | 1.288 |
Gansu | 1.043 | 1.291 | 1.060 | 0.984 | 1.347 |
Qinghai | 1.043 | 1.439 | 1.000 | 1.043 | 1.501 |
Ningxia | 1.006 | 1.259 | 1.000 | 1.006 | 1.266 |
Xinjiang | 0.932 | 1.275 | 0.947 | 0.983 | 1.188 |
Eastern region | 0.975 | 1.207 | 0.980 | 0.995 | 1.177 |
Central region | 0.961 | 1.263 | 0.970 | 0.991 | 1.214 |
Western region | 0.997 | 1.291 | 1.000 | 0.997 | 1.287 |
All regions | 0.979 | 1.255 | 0.985 | 0.994 | 1.229 |
Year | EffCh | TechCh | PEffCh | SEffCh | TFPCh |
2012 | 1.006 | 1.068 | 1.006 | 1.000 | 1.074 |
2013 | 0.916 | 1.293 | 0.934 | 0.981 | 1.185 |
2014 | 1.017 | 1.293 | 1.007 | 1.010 | 1.315 |
2015 | 0.982 | 1.390 | 0.993 | 0.988 | 1.364 |
Year | EffCh | TechCh | PEffCh | SEffCh | TFPCh |
2012 | 1.006 | 1.068 | 1.006 | 1.000 | 1.074 |
2013 | 0.916 | 1.293 | 0.934 | 0.981 | 1.185 |
2014 | 1.017 | 1.293 | 1.007 | 1.010 | 1.315 |
2015 | 0.982 | 1.390 | 0.993 | 0.988 | 1.364 |
EffCh | TechCh | PEffCh | SEffCh | TFPCh | |
2011-2013 | 0.960 | 1.175 | 0.970 | 0.990 | 1.128 |
2013-2015 | 0.999 | 1.340 | 1.000 | 0.999 | 1.339 |
EffCh | TechCh | PEffCh | SEffCh | TFPCh | |
2011-2013 | 0.960 | 1.175 | 0.970 | 0.990 | 1.128 |
2013-2015 | 0.999 | 1.340 | 1.000 | 0.999 | 1.339 |
[1] |
Xiaoyi Zhou, Tong Ye, Tony T. Lee. Designing and analysis of a Wi-Fi data offloading strategy catering for the preference of mobile users. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021038 |
[2] |
Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213 |
[3] |
Habib Ammari, Josselin Garnier, Vincent Jugnon. Detection, reconstruction, and characterization algorithms from noisy data in multistatic wave imaging. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 389-417. doi: 10.3934/dcdss.2015.8.389 |
[4] |
Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225 |
[5] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
[6] |
Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1 |
[7] |
Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021019 |
[8] |
Sohana Jahan. Discriminant analysis of regularized multidimensional scaling. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 255-267. doi: 10.3934/naco.2020024 |
[9] |
Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327 |
[10] |
Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : i-i. doi: 10.3934/dcdss.2020446 |
[11] |
Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1 |
[12] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[13] |
Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034 |
[14] |
Israa Mohammed Khudher, Yahya Ismail Ibrahim, Suhaib Abduljabbar Altamir. Individual biometrics pattern based artificial image analysis techniques. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2020056 |
[15] |
Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2599-2623. doi: 10.3934/dcdsb.2020197 |
[16] |
Hailing Xuan, Xiaoliang Cheng. Numerical analysis and simulation of an adhesive contact problem with damage and long memory. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2781-2804. doi: 10.3934/dcdsb.2020205 |
[17] |
Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185 |
[18] |
Hailing Xuan, Xiaoliang Cheng. Numerical analysis of a thermal frictional contact problem with long memory. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021031 |
[19] |
Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137 |
[20] |
John Leventides, Costas Poulios, Georgios Alkis Tsiatsios, Maria Livada, Stavros Tsipras, Konstantinos Lefcaditis, Panagiota Sargenti, Aleka Sargenti. Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021004 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]