
-
Previous Article
An independent set degree condition for fractional critical deleted graphs
- DCDS-S Home
- This Issue
-
Next Article
A mathematical analysis for the forecast research on tourism carrying capacity to promote the effective and sustainable development of tourism
The perturbed photogravitational restricted three-body problem: Analysis of resonant periodic orbits
1. | Department of Mathematics, Dharmsinh Desai University, Nadiad, Gujarat 3870001, India |
2. | Department of Mathematics, The Maharaja Sayajirao University of Baroda, Vadodara, 390002 Gujarat, India |
3. | Nonlinear Analysis and Applied Mathematics Research Group (NAAM), Mathematics Department, King Abdulaziz University, Jeddah, Saudi Arabia |
4. | Celestial Mechanics Unit, Astronomy Department, National Research Institute of Astronomy and Geophysics (NRIAG), Helwan 11421, Cairo, Egypt |
In the framework of the perturbed photo-gravitational restricted three-body problem, the first order exterior resonant orbits and the first, third and fifth order interior resonant periodic orbits are analyzed. The location, eccentricity and period of the first order exterior and interior resonant orbits are investigated in the unperturbed and perturbed cases for a specified value of Jacobi constant C.
It is observed that as the number of loops increases successively from one loop to five loops, the period of infinitesimal body increases in such a way that the successive difference of periods is either 6 or 7 units. It is further observed that for the exterior resonance, as the number of loops increases, the location of the periodic orbit moves towards the Sun whereas for the interior resonance as the number of loops increases, location of the periodic orbit moves away from the Sun. Thereby we demonstrate that the location of resonant orbits of the given order moves away from the Sun when perturbation is included.
The evolution of interior first order resonant orbit with three loops is studied for different values of Jacobi constant C. It is observed that when the value of C increases, the size of the loop decreases and degenerates finally into a circle, the eccentricity of periodic orbit decreases and location of the periodic orbit moves towards the second primary body.
References:
[1] |
E. I. Abouelmagd, L. G. Guirao Juan and A. Mostafa, Numerical integration of the restricted thee-body problem with Lie series, Astrophysics Space Science, 354 (2014), 369-378. Google Scholar |
[2] |
E. I. Abouelmagd and M. A. Sharaf, The motion around the libration points in the restricted three-body problem with the effect of radiation and oblateness, Astrophys. Space Sci., 344 (2013), 321-332. Google Scholar |
[3] |
E. I. Abouelmagd, F. Alzahrani, J. L. G. Guiro and A. Hobiny,
Periodic orbits around the collinear libration points, J. Nonlinear Sci. Appl. (JNSA), 9 (2016), 1716-1727.
doi: 10.22436/jnsa.009.04.27. |
[4] |
E. I. Abouelmagd, M. S. Alhothuali, L. G. Guirao Juan and H. M. Malaikah,
Periodic and secular solutions in the restricted three ody problem under the effect of zonal harmonic parameters, Applied Mathematics & Information Science, 9 (2015), 1659-1669.
|
[5] |
E. I. Abouelmagd, J. L. G. Guirao, A. Hobiny and F. Alzahrani,
Stability of equilibria points for a dumbbell satellite when the central body is oblate spheroid, Discrete and Continuous Dynamical Systems - Series S (DCDS-S), 8 (2015), 1047-1054.
doi: 10.3934/dcdss.2015.8.1047. |
[6] |
E. I. Abouelmagd and J. L. G. Guirao, On the perturbed restricted three-body problem, Applied Mathematics and Nonlinear Sciences, 1 (2016), 123-144. Google Scholar |
[7] |
E. I. Abouelmagd, J. L. G. Guirao and J. A. Vera,
Dynamics of a dumbbell satellite under the zonal harmonic effect of an oblate body, Commun Nonlinear Sci Numer Simulat., 20 (2015), 1057-1069.
doi: 10.1016/j.cnsns.2014.06.033. |
[8] |
E. I. Abouelmagd, D. Mortari and H. H. Selim, Analytical study of periodic solutions on perturbed equatorial two-body problem,
International Journal of Bifurcation and Chaos, 25 (2015), 1540040, 14pp.
doi: 10.1142/S0218127415400404. |
[9] |
E. I. Abouelmagd, Existence and stability of triangular points in the restricted three-body problem with numerical applications, Astrophys Space Sci., 342 (2012), 45-53. Google Scholar |
[10] |
E. I. Abouelmagd, Stability of the triangular points under combined effects of radiation and oblateness in the restricted three-body problem, Earth Moon Planets, 110 (2013), 143-155. Google Scholar |
[11] |
E. I. Abouelmagd, The effect of photogravitational force and oblateness in the perturbed restricted three-body problem, Astrophys Space Sci., 346 (2013), 51-69. Google Scholar |
[12] |
E. I. Abouelmagd, M. S. Alhothuali, L. G. Guirao Juan and H. M. Malaikah, The effect of zonal harmonic coefficients in the framework of the restricted three-body problem, Advances in Space Research, 55 (2015), 1660-1672. Google Scholar |
[13] |
E. Balint, R. Renata, S. Zsolt and F. Emese,
Stability of higher order resonances in the restricted-three body problem, Celest. Mech. Dyn. Astron., 113 (2012), 95-112.
doi: 10.1007/s10569-012-9420-4. |
[14] |
F. Cachucho, P. M. Cincotta and S. Ferraz-Mello,
Chirikov diffusion in the asteroidal three-body resonance (5, -2, -2), Celest. Mech. Dyn. Astron., 108 (2010), 35-58.
doi: 10.1007/s10569-010-9290-6. |
[15] |
E. I. Chiang, J. Lovering, R. I. Millis, M. W. Buie, L. H. Wasserman and K. J. Meech, Resonant and secular families of the Kuiper belt, Earth Moon Planets, 92 (2003), 49-62. Google Scholar |
[16] |
C. Douskos, V. Kalantonis and P. Markellos, Effects of resonances on the stability of retrograde satellites, Astrophys. Space Sci., 310, 245-249. Google Scholar |
[17] |
R. Dvorak, A. Bazs and L.-Y. Zhou,
Where are the Uranus Trojans?, Celest. Mech. Dyn. Astron., 107 (2010), 51-62.
doi: 10.1007/s10569-010-9261-y. |
[18] |
V. V. Emel'yanenko and E. L. Kiseleva, Resonant motion of trans-Neptunian objects in high-eccentricity orbits, Astron. Lett., 34 (2008), 271-279. Google Scholar |
[19] |
J. Gayon, E. Bois and H. Scholl,
Dynamics of planets in retrograde mean motion resonance, Celest. Mech. Dyn. Astron., 103 (2009), 267-279.
doi: 10.1007/s10569-009-9191-8. |
[20] |
J. D. Hadjidemetriou, D. Psychoyos and G. Voyatzis,
The 1:1 resonance in extrasolar planetary systems, Celest. Mech. Dyn. Astron., 104 (2009), 23-38.
doi: 10.1007/s10569-009-9185-6. |
[21] |
J. D. Hadjidemetriou and G. Voyatzis,
On the dynamics of extrasolar planetary systems under dissipation: Migration of planets, Celest. Mech. Dyn. Astron., 107 (2010), 3-19.
doi: 10.1007/s10569-010-9260-z. |
[22] |
M. J. Holman and N. W. Murray, Chaos in high-order mean motion resonances in the outer asteroid belt, Astron. J., 112 (1996), 1278-1293. Google Scholar |
[23] |
A. S. Libert and K. Tsiganis, Trapping in three-planet resonances during gas-driven migration, Celest. Mech. Dyn. Astron., 111 (2011), 201-218. Google Scholar |
[24] |
E. Kolmen, N. J. Kasdin and P. Gurfil, Quasi-periodic orbits of the restricted three body problem made easy, AIP Conference Proceedings, 886 (2007), 68-77. Google Scholar |
[25] |
V. V. Markellos, K. E. Papadakis and E. A. Perdios, Non-linear stability zones around triangular equilibria in the plane circular restricted three-body problem with oblateness, Astrophys Space Sci., 245 (1996), 157-164. Google Scholar |
[26] |
F. Migliorini, P. Michel, A. Morbidelli, D. Nesvorn and V. Zappal, Origin of multi kilometer Earth and Mars-crossing asteroids: A quantitative simulation, Science, 281 (1998), 2022-2024. Google Scholar |
[27] |
A. Morbidelli, V. Zappala, M. Moons, A. Cellino and R. Gonczi, Asteriod families close to mean motion resonances: Dynamical effects and physical implications, Icarus, 118 (1995), 137-154. Google Scholar |
[28] |
C. D. Murray and S. F. Dermot, Solar System Dynamics, Cambridge University Press, 1999. |
[29] |
N. M. Pathak, R. K. Sharma and V. O. Thomas, Evolution of periodic orbits in the Sun- Saturn system, International Journal of Astronomy and Astrophysics, 6 (2016), 175-197. Google Scholar |
[30] |
N. M. Pathak and V. O. Thomas, Evolution of the f Family Orbits in the Photo-Gravitational Sun-Saturn System with Oblateness, International Journal of Astronomy and Astrophysics, 6 (2016), 254-271. Google Scholar |
[31] |
N. M. Pathak and V. O. Thomas, Analysis of effect of oblateness of smaller primary on the evolution of periodic orbits, International Journal of Astronomy and Astrophysics, 6 (2016), 440-463. Google Scholar |
[32] |
N. M. Pathak and V. O. Thomas, Analysis of effect of solar radiation pressure of bigger primary on the evolution of periodic orbits, International Journal of Astronomy and Astrophysics, 6 (2016), 464-493. Google Scholar |
[33] |
E. A. Perdios and V. S. Kalantonis,
Self-resonant bifurcations of the Sitnikov family and the appearance of 3D isolas in the restricted three-body problem, Celest. Mech. Dyn. Astron., 113 (2012), 377-386.
doi: 10.1007/s10569-012-9424-0. |
[34] |
H. Poincaré, Les Méthodes Nouvelles de la Méchanique, Celeste. Gauthier- Villas, Paris., 1987. |
[35] |
N. Pushparaj and R. K. Sharma, Interior resonance periodic orbits in photogravitational restricted three-body problem, Advances in Astrophysics, 2 (2017), 263-272. Google Scholar |
[36] |
A. E. Roy and M. W. Ovenden, On the occurrence of commensurable mean motions in the solar system, Monthly Notices of the Royal Astronomical Society, 114 (1954), 232-241. Google Scholar |
[37] |
R. K. Sharma and P. V. Subbarao, A case of commensurability induced by oblateness, Celest. Mech., 18 (1978), 185-194. Google Scholar |
[38] |
R. K. Sharma, The linear stability of libration points of the photo gravitational restricted three body problem when the smaller primary is an oblate spheroid, Astrophysics and Space Science, 135 (1987), 271-281. Google Scholar |
[39] |
P. P. Stor, J. Kla cka and L. K. mar,
Motion of dust in mean motion resonance with planets, Celest. Mech. Dyn. Astron., 103 (2009), 343-364.
doi: 10.1007/s10569-009-9202-9. |
[40] |
E. W. Thommes, A safety net for fast migrators: Interactions between gap-opening and sub ap-opening bodies in a protoplanetary disk, Astrophys. J., 626 (2005), 1033-1044. Google Scholar |
show all references
References:
[1] |
E. I. Abouelmagd, L. G. Guirao Juan and A. Mostafa, Numerical integration of the restricted thee-body problem with Lie series, Astrophysics Space Science, 354 (2014), 369-378. Google Scholar |
[2] |
E. I. Abouelmagd and M. A. Sharaf, The motion around the libration points in the restricted three-body problem with the effect of radiation and oblateness, Astrophys. Space Sci., 344 (2013), 321-332. Google Scholar |
[3] |
E. I. Abouelmagd, F. Alzahrani, J. L. G. Guiro and A. Hobiny,
Periodic orbits around the collinear libration points, J. Nonlinear Sci. Appl. (JNSA), 9 (2016), 1716-1727.
doi: 10.22436/jnsa.009.04.27. |
[4] |
E. I. Abouelmagd, M. S. Alhothuali, L. G. Guirao Juan and H. M. Malaikah,
Periodic and secular solutions in the restricted three ody problem under the effect of zonal harmonic parameters, Applied Mathematics & Information Science, 9 (2015), 1659-1669.
|
[5] |
E. I. Abouelmagd, J. L. G. Guirao, A. Hobiny and F. Alzahrani,
Stability of equilibria points for a dumbbell satellite when the central body is oblate spheroid, Discrete and Continuous Dynamical Systems - Series S (DCDS-S), 8 (2015), 1047-1054.
doi: 10.3934/dcdss.2015.8.1047. |
[6] |
E. I. Abouelmagd and J. L. G. Guirao, On the perturbed restricted three-body problem, Applied Mathematics and Nonlinear Sciences, 1 (2016), 123-144. Google Scholar |
[7] |
E. I. Abouelmagd, J. L. G. Guirao and J. A. Vera,
Dynamics of a dumbbell satellite under the zonal harmonic effect of an oblate body, Commun Nonlinear Sci Numer Simulat., 20 (2015), 1057-1069.
doi: 10.1016/j.cnsns.2014.06.033. |
[8] |
E. I. Abouelmagd, D. Mortari and H. H. Selim, Analytical study of periodic solutions on perturbed equatorial two-body problem,
International Journal of Bifurcation and Chaos, 25 (2015), 1540040, 14pp.
doi: 10.1142/S0218127415400404. |
[9] |
E. I. Abouelmagd, Existence and stability of triangular points in the restricted three-body problem with numerical applications, Astrophys Space Sci., 342 (2012), 45-53. Google Scholar |
[10] |
E. I. Abouelmagd, Stability of the triangular points under combined effects of radiation and oblateness in the restricted three-body problem, Earth Moon Planets, 110 (2013), 143-155. Google Scholar |
[11] |
E. I. Abouelmagd, The effect of photogravitational force and oblateness in the perturbed restricted three-body problem, Astrophys Space Sci., 346 (2013), 51-69. Google Scholar |
[12] |
E. I. Abouelmagd, M. S. Alhothuali, L. G. Guirao Juan and H. M. Malaikah, The effect of zonal harmonic coefficients in the framework of the restricted three-body problem, Advances in Space Research, 55 (2015), 1660-1672. Google Scholar |
[13] |
E. Balint, R. Renata, S. Zsolt and F. Emese,
Stability of higher order resonances in the restricted-three body problem, Celest. Mech. Dyn. Astron., 113 (2012), 95-112.
doi: 10.1007/s10569-012-9420-4. |
[14] |
F. Cachucho, P. M. Cincotta and S. Ferraz-Mello,
Chirikov diffusion in the asteroidal three-body resonance (5, -2, -2), Celest. Mech. Dyn. Astron., 108 (2010), 35-58.
doi: 10.1007/s10569-010-9290-6. |
[15] |
E. I. Chiang, J. Lovering, R. I. Millis, M. W. Buie, L. H. Wasserman and K. J. Meech, Resonant and secular families of the Kuiper belt, Earth Moon Planets, 92 (2003), 49-62. Google Scholar |
[16] |
C. Douskos, V. Kalantonis and P. Markellos, Effects of resonances on the stability of retrograde satellites, Astrophys. Space Sci., 310, 245-249. Google Scholar |
[17] |
R. Dvorak, A. Bazs and L.-Y. Zhou,
Where are the Uranus Trojans?, Celest. Mech. Dyn. Astron., 107 (2010), 51-62.
doi: 10.1007/s10569-010-9261-y. |
[18] |
V. V. Emel'yanenko and E. L. Kiseleva, Resonant motion of trans-Neptunian objects in high-eccentricity orbits, Astron. Lett., 34 (2008), 271-279. Google Scholar |
[19] |
J. Gayon, E. Bois and H. Scholl,
Dynamics of planets in retrograde mean motion resonance, Celest. Mech. Dyn. Astron., 103 (2009), 267-279.
doi: 10.1007/s10569-009-9191-8. |
[20] |
J. D. Hadjidemetriou, D. Psychoyos and G. Voyatzis,
The 1:1 resonance in extrasolar planetary systems, Celest. Mech. Dyn. Astron., 104 (2009), 23-38.
doi: 10.1007/s10569-009-9185-6. |
[21] |
J. D. Hadjidemetriou and G. Voyatzis,
On the dynamics of extrasolar planetary systems under dissipation: Migration of planets, Celest. Mech. Dyn. Astron., 107 (2010), 3-19.
doi: 10.1007/s10569-010-9260-z. |
[22] |
M. J. Holman and N. W. Murray, Chaos in high-order mean motion resonances in the outer asteroid belt, Astron. J., 112 (1996), 1278-1293. Google Scholar |
[23] |
A. S. Libert and K. Tsiganis, Trapping in three-planet resonances during gas-driven migration, Celest. Mech. Dyn. Astron., 111 (2011), 201-218. Google Scholar |
[24] |
E. Kolmen, N. J. Kasdin and P. Gurfil, Quasi-periodic orbits of the restricted three body problem made easy, AIP Conference Proceedings, 886 (2007), 68-77. Google Scholar |
[25] |
V. V. Markellos, K. E. Papadakis and E. A. Perdios, Non-linear stability zones around triangular equilibria in the plane circular restricted three-body problem with oblateness, Astrophys Space Sci., 245 (1996), 157-164. Google Scholar |
[26] |
F. Migliorini, P. Michel, A. Morbidelli, D. Nesvorn and V. Zappal, Origin of multi kilometer Earth and Mars-crossing asteroids: A quantitative simulation, Science, 281 (1998), 2022-2024. Google Scholar |
[27] |
A. Morbidelli, V. Zappala, M. Moons, A. Cellino and R. Gonczi, Asteriod families close to mean motion resonances: Dynamical effects and physical implications, Icarus, 118 (1995), 137-154. Google Scholar |
[28] |
C. D. Murray and S. F. Dermot, Solar System Dynamics, Cambridge University Press, 1999. |
[29] |
N. M. Pathak, R. K. Sharma and V. O. Thomas, Evolution of periodic orbits in the Sun- Saturn system, International Journal of Astronomy and Astrophysics, 6 (2016), 175-197. Google Scholar |
[30] |
N. M. Pathak and V. O. Thomas, Evolution of the f Family Orbits in the Photo-Gravitational Sun-Saturn System with Oblateness, International Journal of Astronomy and Astrophysics, 6 (2016), 254-271. Google Scholar |
[31] |
N. M. Pathak and V. O. Thomas, Analysis of effect of oblateness of smaller primary on the evolution of periodic orbits, International Journal of Astronomy and Astrophysics, 6 (2016), 440-463. Google Scholar |
[32] |
N. M. Pathak and V. O. Thomas, Analysis of effect of solar radiation pressure of bigger primary on the evolution of periodic orbits, International Journal of Astronomy and Astrophysics, 6 (2016), 464-493. Google Scholar |
[33] |
E. A. Perdios and V. S. Kalantonis,
Self-resonant bifurcations of the Sitnikov family and the appearance of 3D isolas in the restricted three-body problem, Celest. Mech. Dyn. Astron., 113 (2012), 377-386.
doi: 10.1007/s10569-012-9424-0. |
[34] |
H. Poincaré, Les Méthodes Nouvelles de la Méchanique, Celeste. Gauthier- Villas, Paris., 1987. |
[35] |
N. Pushparaj and R. K. Sharma, Interior resonance periodic orbits in photogravitational restricted three-body problem, Advances in Astrophysics, 2 (2017), 263-272. Google Scholar |
[36] |
A. E. Roy and M. W. Ovenden, On the occurrence of commensurable mean motions in the solar system, Monthly Notices of the Royal Astronomical Society, 114 (1954), 232-241. Google Scholar |
[37] |
R. K. Sharma and P. V. Subbarao, A case of commensurability induced by oblateness, Celest. Mech., 18 (1978), 185-194. Google Scholar |
[38] |
R. K. Sharma, The linear stability of libration points of the photo gravitational restricted three body problem when the smaller primary is an oblate spheroid, Astrophysics and Space Science, 135 (1987), 271-281. Google Scholar |
[39] |
P. P. Stor, J. Kla cka and L. K. mar,
Motion of dust in mean motion resonance with planets, Celest. Mech. Dyn. Astron., 103 (2009), 343-364.
doi: 10.1007/s10569-009-9202-9. |
[40] |
E. W. Thommes, A safety net for fast migrators: Interactions between gap-opening and sub ap-opening bodies in a protoplanetary disk, Astrophys. J., 626 (2005), 1033-1044. Google Scholar |

























Ⅰ | 1 | 0 | 1 | 0.93904 | 1 | 1:2 | 0.40895 | 13 | 0.49936 |
2 | 0.88740 | 2:3 | 0.32301 | 19 | 0.66633 | ||||
3 | 0.85623 | 3:4 | 0.29337 | 26 | 0.74943 | ||||
4 | 0.83547 | 4:5 | 0.28015 | 32 | 0.79977 | ||||
5 | 0.82075 | 5:6 | 0.27331 | 38 | 0.83313 | ||||
Ⅱ | 1 | 0.0001 | 1 | 0.93877 | 1 | 1:2 | 0.40904 | 13 | 0.49945 |
2 | 0.88710 | 2:3 | 0.32319 | 19 | 0.66641 | ||||
3 | 0.85592 | 3:4 | 0.29358 | 26 | 0.74979 | ||||
4 | 0.83516 | 4:5 | 0.28039 | 32 | 0.79982 | ||||
5 | 0.82044 | 5:6 | 0.27355 | 38 | 0.83318 | ||||
Ⅲ | 0.9845 | 0 | 1 | 0.97895 | 1 | 1:2 | 0.36044 | 13 | 0.52805 |
2 | 0.93800 | 2:3 | 0.26118 | 19 | 0.69904 | ||||
3 | 0.91210 | 3:4 | 0.22428 | 26 | 0.78432 | ||||
4 | 0.89403 | 4:5 | 0.20685 | 32 | 0.83562 | ||||
5 | 0.88075 | 5:6 | 0.19740 | 38 | 0.86990 | ||||
Ⅳ | 0.9845 | 0.0001 | 1 | 0.97870 | 1 | 1:2 | 0.36081 | 13 | 0.52779 |
2 | 0.93764 | 2:3 | 0.26136 | 19 | 0.69919 | ||||
3 | 0.91172 | 3:4 | 0.22453 | 26 | 0.78443 | ||||
4 | 0.89363 | 4:5 | 0.20713 | 32 | 0.83574 | ||||
5 | 0.88035 | 5:6 | 0.19771 | 38 | 0.86999 |
Ⅰ | 1 | 0 | 1 | 0.93904 | 1 | 1:2 | 0.40895 | 13 | 0.49936 |
2 | 0.88740 | 2:3 | 0.32301 | 19 | 0.66633 | ||||
3 | 0.85623 | 3:4 | 0.29337 | 26 | 0.74943 | ||||
4 | 0.83547 | 4:5 | 0.28015 | 32 | 0.79977 | ||||
5 | 0.82075 | 5:6 | 0.27331 | 38 | 0.83313 | ||||
Ⅱ | 1 | 0.0001 | 1 | 0.93877 | 1 | 1:2 | 0.40904 | 13 | 0.49945 |
2 | 0.88710 | 2:3 | 0.32319 | 19 | 0.66641 | ||||
3 | 0.85592 | 3:4 | 0.29358 | 26 | 0.74979 | ||||
4 | 0.83516 | 4:5 | 0.28039 | 32 | 0.79982 | ||||
5 | 0.82044 | 5:6 | 0.27355 | 38 | 0.83318 | ||||
Ⅲ | 0.9845 | 0 | 1 | 0.97895 | 1 | 1:2 | 0.36044 | 13 | 0.52805 |
2 | 0.93800 | 2:3 | 0.26118 | 19 | 0.69904 | ||||
3 | 0.91210 | 3:4 | 0.22428 | 26 | 0.78432 | ||||
4 | 0.89403 | 4:5 | 0.20685 | 32 | 0.83562 | ||||
5 | 0.88075 | 5:6 | 0.19740 | 38 | 0.86990 | ||||
Ⅳ | 0.9845 | 0.0001 | 1 | 0.97870 | 1 | 1:2 | 0.36081 | 13 | 0.52779 |
2 | 0.93764 | 2:3 | 0.26136 | 19 | 0.69919 | ||||
3 | 0.91172 | 3:4 | 0.22453 | 26 | 0.78443 | ||||
4 | 0.89363 | 4:5 | 0.20713 | 32 | 0.83574 | ||||
5 | 0.88035 | 5:6 | 0.19771 | 38 | 0.86999 |
Ⅰ | 1 | 0 | 1 | 0.939000 | 1 | 1:2 | 0.40852 | 13 | 0.50015 |
2 | 0.887370 | 2:3 | 0.32284 | 19 | 0.66692 | ||||
3 | 0.856190 | 3:4 | 0.29324 | 26 | 0.75031 | ||||
4 | 0.835433 | 4:5 | 0.28006 | 32 | 0.80033 | ||||
5 | 0.820715 | 5:6 | 0.27323 | 38 | 0.83368 | ||||
Ⅱ | 1 | 0.0001 | 1 | 0.93875 | 1 | 1:2 | 0.40866 | 13 | 0.50017 |
2 | 0.88708 | 2:3 | 0.32302 | 19 | 0.66697 | ||||
3 | 0.85588 | 3:4 | 0.29346 | 26 | 0.75037 | ||||
4 | 0.83512 | 4:5 | 0.28029 | 32 | 0.80039 | ||||
5 | 0.82040 | 5:6 | 0.27347 | 38 | 0.83374 | ||||
Ⅲ | 0.9845 | 0 | 1 | 0.97891 | 1 | 1:2 | 0.35887 | 13 | 0.53027 |
2 | 0.93795 | 2:3 | 0.26069 | 19 | 0.70019 | ||||
3 | 0.91204 | 3:4 | 0.22397 | 26 | 0.78521 | ||||
4 | 0.89397 | 4:5 | 0.20662 | 32 | 0.83643 | ||||
5 | 0.88069 | 5:6 | 0.19722 | 38 | 0.87067 | ||||
Ⅳ | 0.9845 | 0.0001 | 1 | 0.97861 | 1 | 1:2 | 0.35895 | 13 | 0.53041 |
2 | 0.93761 | 2:3 | 0.26090 | 19 | 0.70018 | ||||
3 | 0.91167 | 3:4 | 0.22423 | 26 | 0.78529 | ||||
4 | 0.89358 | 4:5 | 0.20691 | 32 | 0.83652 | ||||
5 | 0.88029 | 5:6 | 0.19752 | 38 | 0.87076 |
Ⅰ | 1 | 0 | 1 | 0.939000 | 1 | 1:2 | 0.40852 | 13 | 0.50015 |
2 | 0.887370 | 2:3 | 0.32284 | 19 | 0.66692 | ||||
3 | 0.856190 | 3:4 | 0.29324 | 26 | 0.75031 | ||||
4 | 0.835433 | 4:5 | 0.28006 | 32 | 0.80033 | ||||
5 | 0.820715 | 5:6 | 0.27323 | 38 | 0.83368 | ||||
Ⅱ | 1 | 0.0001 | 1 | 0.93875 | 1 | 1:2 | 0.40866 | 13 | 0.50017 |
2 | 0.88708 | 2:3 | 0.32302 | 19 | 0.66697 | ||||
3 | 0.85588 | 3:4 | 0.29346 | 26 | 0.75037 | ||||
4 | 0.83512 | 4:5 | 0.28029 | 32 | 0.80039 | ||||
5 | 0.82040 | 5:6 | 0.27347 | 38 | 0.83374 | ||||
Ⅲ | 0.9845 | 0 | 1 | 0.97891 | 1 | 1:2 | 0.35887 | 13 | 0.53027 |
2 | 0.93795 | 2:3 | 0.26069 | 19 | 0.70019 | ||||
3 | 0.91204 | 3:4 | 0.22397 | 26 | 0.78521 | ||||
4 | 0.89397 | 4:5 | 0.20662 | 32 | 0.83643 | ||||
5 | 0.88069 | 5:6 | 0.19722 | 38 | 0.87067 | ||||
Ⅳ | 0.9845 | 0.0001 | 1 | 0.97861 | 1 | 1:2 | 0.35895 | 13 | 0.53041 |
2 | 0.93761 | 2:3 | 0.26090 | 19 | 0.70018 | ||||
3 | 0.91167 | 3:4 | 0.22423 | 26 | 0.78529 | ||||
4 | 0.89358 | 4:5 | 0.20691 | 32 | 0.83652 | ||||
5 | 0.88029 | 5:6 | 0.19752 | 38 | 0.87076 |
Ⅰ | 1 | 0 | 2 | 0.29385 | 1 | 2:1 | 0.53353 | 07 | 2.00000 |
3 | 0.47692 | 3:2 | 0.37506 | 13 | 1.50000 | ||||
4 | 0.55735 | 4:3 | 0.32483 | 19 | 1.33330 | ||||
5 | 0.60105 | 5:4 | 0.30258 | 26 | 1.24991 | ||||
6 | 0.62815 | 6:5 | 0.29074 | 32 | 1.19981 | ||||
7 | 0.64650 | 7:6 | 0.28366 | 38 | 1.16633 | ||||
8 | 0.66000 | 8:7 | 0.27897 | 44 | 1.14185 | ||||
Ⅱ | 1 | 0.0001 | 2 | 0.29375 | 1 | 2:1 | 0.53367 | 07 | 2.00015 |
3 | 0.47675 | 3:2 | 0.37525 | 13 | 1.50009 | ||||
4 | 0.55713 | 4:3 | 0.32506 | 19 | 1.33339 | ||||
5 | 0.60080 | 5:4 | 0.30283 | 26 | 1.25001 | ||||
6 | 0.62788 | 6:5 | 0.29100 | 32 | 1.19992 | ||||
7 | 0.64627 | 7:6 | 0.28391 | 38 | 1.16635 | ||||
8 | 0.65980 | 8:7 | 0.27921 | 44 | 1.14180 | ||||
Ⅲ | 0.9845 | 0 | 2 | 0.31234 | 1 | 2:1 | 0.47832 | 07 | 2.15851 |
3 | 0.50990 | 3:2 | 0.30776 | 13 | 1.58182 | ||||
4 | 0.59888 | 4:3 | 0.25104 | 19 | 1.39854 | ||||
5 | 0.64770 | 5:4 | 0.22523 | 26 | 1.30827 | ||||
6 | 0.67801 | 6:5 | 0.21135 | 32 | 1.25452 | ||||
7 | 0.69851 | 7:6 | 0.20301 | 38 | 1.21879 | ||||
8 | 0.71327 | 8:7 | 0.19758 | 44 | 1.19323 | ||||
Ⅳ | 0.9845 | 0.0001 | 2 | 0.31222 | 1 | 2:1 | 0.47848 | 07 | 2.15875 |
3 | 0.50970 | 3:2 | 0.30799 | 13 | 1.58195 | ||||
4 | 0.59861 | 4:3 | 0.25133 | 19 | 1.39869 | ||||
5 | 0.64740 | 5:4 | 0.22554 | 26 | 1.30839 | ||||
6 | 0.67768 | 6:5 | 0.21168 | 32 | 1.25465 | ||||
7 | 0.69819 | 7:6 | 0.20333 | 38 | 1.21887 | ||||
8 | 0.71290 | 8:7 | 0.19793 | 44 | 1.19338 |
Ⅰ | 1 | 0 | 2 | 0.29385 | 1 | 2:1 | 0.53353 | 07 | 2.00000 |
3 | 0.47692 | 3:2 | 0.37506 | 13 | 1.50000 | ||||
4 | 0.55735 | 4:3 | 0.32483 | 19 | 1.33330 | ||||
5 | 0.60105 | 5:4 | 0.30258 | 26 | 1.24991 | ||||
6 | 0.62815 | 6:5 | 0.29074 | 32 | 1.19981 | ||||
7 | 0.64650 | 7:6 | 0.28366 | 38 | 1.16633 | ||||
8 | 0.66000 | 8:7 | 0.27897 | 44 | 1.14185 | ||||
Ⅱ | 1 | 0.0001 | 2 | 0.29375 | 1 | 2:1 | 0.53367 | 07 | 2.00015 |
3 | 0.47675 | 3:2 | 0.37525 | 13 | 1.50009 | ||||
4 | 0.55713 | 4:3 | 0.32506 | 19 | 1.33339 | ||||
5 | 0.60080 | 5:4 | 0.30283 | 26 | 1.25001 | ||||
6 | 0.62788 | 6:5 | 0.29100 | 32 | 1.19992 | ||||
7 | 0.64627 | 7:6 | 0.28391 | 38 | 1.16635 | ||||
8 | 0.65980 | 8:7 | 0.27921 | 44 | 1.14180 | ||||
Ⅲ | 0.9845 | 0 | 2 | 0.31234 | 1 | 2:1 | 0.47832 | 07 | 2.15851 |
3 | 0.50990 | 3:2 | 0.30776 | 13 | 1.58182 | ||||
4 | 0.59888 | 4:3 | 0.25104 | 19 | 1.39854 | ||||
5 | 0.64770 | 5:4 | 0.22523 | 26 | 1.30827 | ||||
6 | 0.67801 | 6:5 | 0.21135 | 32 | 1.25452 | ||||
7 | 0.69851 | 7:6 | 0.20301 | 38 | 1.21879 | ||||
8 | 0.71327 | 8:7 | 0.19758 | 44 | 1.19323 | ||||
Ⅳ | 0.9845 | 0.0001 | 2 | 0.31222 | 1 | 2:1 | 0.47848 | 07 | 2.15875 |
3 | 0.50970 | 3:2 | 0.30799 | 13 | 1.58195 | ||||
4 | 0.59861 | 4:3 | 0.25133 | 19 | 1.39869 | ||||
5 | 0.64740 | 5:4 | 0.22554 | 26 | 1.30839 | ||||
6 | 0.67768 | 6:5 | 0.21168 | 32 | 1.25465 | ||||
7 | 0.69819 | 7:6 | 0.20333 | 38 | 1.21887 | ||||
8 | 0.71290 | 8:7 | 0.19793 | 44 | 1.19338 |
Ⅰ | 1 | 0 | 2 | 0.29386 | 1 | 2:1 | 0.53352 | 07 | 2.00090 |
3 | 0.47693 | 3:2 | 0.37504 | 13 | 1.50067 | ||||
4 | 0.55734 | 4:3 | 0.32482 | 19 | 1.33393 | ||||
5 | 0.60102 | 5:4 | 0.30258 | 26 | 1.25055 | ||||
6 | 0.62808 | 6:5 | 0.29075 | 32 | 1.20005 | ||||
7 | 0.64637 | 7:6 | 0.28369 | 38 | 1.16792 | ||||
8 | 0.65954 | 8:7 | 0.27911 | 44 | 1.14323 | ||||
Ⅱ | 1 | 0.0001 | 2 | 0.293750 | 1 | 2:1 | 0.533670 | 07 | 2.00105 |
3 | 0.476745 | 3:2 | 0.375250 | 13 | 1.50079 | ||||
4 | 0.557125 | 4:3 | 0.325050 | 19 | 1.33402 | ||||
5 | 0.600770 | 5:4 | 0.302830 | 26 | 1.25065 | ||||
6 | 0.627830 | 6:5 | 0.291011 | 32 | 1.20058 | ||||
7 | 0.646100 | 7:6 | 0.283950 | 38 | 1.16722 | ||||
8 | 0.659270 | 8:7 | 0.279370 | 44 | 1.14331 | ||||
Ⅲ | 0.9845 | 0 | 2 | 0.31235 | 1 | 2:1 | 0.47831 | 07 | 2.15947 |
3 | 0.50991 | 3:2 | 0.30774 | 13 | 1.58251 | ||||
4 | 0.59887 | 4:3 | 0.25103 | 19 | 1.39922 | ||||
5 | 0.64768 | 5:4 | 0.22522 | 26 | 1.30892 | ||||
6 | 0.67797 | 6:5 | 0.21134 | 32 | 1.25519 | ||||
7 | 0.69843 | 7:6 | 0.20301 | 38 | 1.21952 | ||||
8 | 0.71309 | 8:7 | 0.19761 | 44 | 1.19412 | ||||
Ⅳ | 0.9845 | 0.0001 | 2 | 0.31223 | 1 | 2:1 | 0.478470 | 07 | 2.15970 |
3 | 0.50971 | 3:2 | 0.307980 | 13 | 1.58266 | ||||
4 | 0.59860 | 4:3 | 0.251320 | 19 | 1.39936 | ||||
5 | 0.64738 | 5:4 | 0.225530 | 26 | 1.30905 | ||||
6 | 0.67764 | 6:5 | 0.211567 | 32 | 1.25532 | ||||
7 | 0.69809 | 7:6 | 0.203340 | 38 | 1.21963 | ||||
8 | 0.71273 | 8:7 | 0.197960 | 44 | 1.19426 |
Ⅰ | 1 | 0 | 2 | 0.29386 | 1 | 2:1 | 0.53352 | 07 | 2.00090 |
3 | 0.47693 | 3:2 | 0.37504 | 13 | 1.50067 | ||||
4 | 0.55734 | 4:3 | 0.32482 | 19 | 1.33393 | ||||
5 | 0.60102 | 5:4 | 0.30258 | 26 | 1.25055 | ||||
6 | 0.62808 | 6:5 | 0.29075 | 32 | 1.20005 | ||||
7 | 0.64637 | 7:6 | 0.28369 | 38 | 1.16792 | ||||
8 | 0.65954 | 8:7 | 0.27911 | 44 | 1.14323 | ||||
Ⅱ | 1 | 0.0001 | 2 | 0.293750 | 1 | 2:1 | 0.533670 | 07 | 2.00105 |
3 | 0.476745 | 3:2 | 0.375250 | 13 | 1.50079 | ||||
4 | 0.557125 | 4:3 | 0.325050 | 19 | 1.33402 | ||||
5 | 0.600770 | 5:4 | 0.302830 | 26 | 1.25065 | ||||
6 | 0.627830 | 6:5 | 0.291011 | 32 | 1.20058 | ||||
7 | 0.646100 | 7:6 | 0.283950 | 38 | 1.16722 | ||||
8 | 0.659270 | 8:7 | 0.279370 | 44 | 1.14331 | ||||
Ⅲ | 0.9845 | 0 | 2 | 0.31235 | 1 | 2:1 | 0.47831 | 07 | 2.15947 |
3 | 0.50991 | 3:2 | 0.30774 | 13 | 1.58251 | ||||
4 | 0.59887 | 4:3 | 0.25103 | 19 | 1.39922 | ||||
5 | 0.64768 | 5:4 | 0.22522 | 26 | 1.30892 | ||||
6 | 0.67797 | 6:5 | 0.21134 | 32 | 1.25519 | ||||
7 | 0.69843 | 7:6 | 0.20301 | 38 | 1.21952 | ||||
8 | 0.71309 | 8:7 | 0.19761 | 44 | 1.19412 | ||||
Ⅳ | 0.9845 | 0.0001 | 2 | 0.31223 | 1 | 2:1 | 0.478470 | 07 | 2.15970 |
3 | 0.50971 | 3:2 | 0.307980 | 13 | 1.58266 | ||||
4 | 0.59860 | 4:3 | 0.251320 | 19 | 1.39936 | ||||
5 | 0.64738 | 5:4 | 0.225530 | 26 | 1.30905 | ||||
6 | 0.67764 | 6:5 | 0.211567 | 32 | 1.25532 | ||||
7 | 0.69809 | 7:6 | 0.203340 | 38 | 1.21963 | ||||
8 | 0.71273 | 8:7 | 0.197960 | 44 | 1.19426 |
2.93 | 0.50970 | 1 | 3:2 | 0.30799 | 13 | 1.58195 |
2.95 | 0.53653 | 0.27320 | 1.57665 | |||
2.97 | 0.56750 | 0.23304 | 1.57112 | |||
2.99 | 0.60501 | 0.18439 | 1.56524 | |||
3.01 | 0.65610 | 0.11817 | 1.55825 | |||
3.02 | 0.69590 | 0.06656 | 1.55357 | |||
3.03 | 0.75300 | 0.01658 | 1.56821 |
2.93 | 0.50970 | 1 | 3:2 | 0.30799 | 13 | 1.58195 |
2.95 | 0.53653 | 0.27320 | 1.57665 | |||
2.97 | 0.56750 | 0.23304 | 1.57112 | |||
2.99 | 0.60501 | 0.18439 | 1.56524 | |||
3.01 | 0.65610 | 0.11817 | 1.55825 | |||
3.02 | 0.69590 | 0.06656 | 1.55357 | |||
3.03 | 0.75300 | 0.01658 | 1.56821 |
2.93 | 0.50971 | 1 | 3:2 | 0.30798 | 13 | 1.58266 |
2.97 | 0.56750 | 0.23303 | 1.57184 | |||
3.01 | 0.65608 | 0.11815 | 1.55901 | |||
3.02 | 0.69590 | 0.06651 | 1.55431 | |||
3.03 | 0.75200 | 0.01514 | 1.56908 |
2.93 | 0.50971 | 1 | 3:2 | 0.30798 | 13 | 1.58266 |
2.97 | 0.56750 | 0.23303 | 1.57184 | |||
3.01 | 0.65608 | 0.11815 | 1.55901 | |||
3.02 | 0.69590 | 0.06651 | 1.55431 | |||
3.03 | 0.75200 | 0.01514 | 1.56908 |
2.93 | 0.39923 | 3 | 7:4 | 0.39522 | 26 | 1.86449 |
2.96 | 0.42824 | 0.35353 | 1.85476 | |||
2.98 | 0.44991 | 0.32238 | 1.84836 |
2.93 | 0.39923 | 3 | 7:4 | 0.39522 | 26 | 1.86449 |
2.96 | 0.42824 | 0.35353 | 1.85476 | |||
2.98 | 0.44991 | 0.32238 | 1.84836 |
2.93 | 0.39923 | 3 | 7:4 | 0.39521 | 26 | 1.86534 |
2.96 | 0.42823 | 0.35353 | 1.85564 | |||
2.98 | 0.44991 | 0.32232 | 1.84921 |
2.93 | 0.39923 | 3 | 7:4 | 0.39521 | 26 | 1.86534 |
2.96 | 0.42823 | 0.35353 | 1.85564 | |||
2.98 | 0.44991 | 0.32232 | 1.84921 |
Ⅰ | 7 | 0.39923 | 3 | 7:4 | 0.39522 | 26 | 1.86449 |
8 | 0.46231 | 8:5 | 0.34307 | 32 | 1.69384 | ||
10 | 0.54635 | 10:7 | 0.28318 | 44 | 1.50281 | ||
11 | 0.57515 | 11:8 | 0.26511 | 51 | 1.44432 | ||
13 | 0.61796 | 13:10 | 0.24063 | 63 | 1.36221 | ||
14 | 0.63358 | 14:11 | 0.23244 | 70 | 1.33343 | ||
Ⅱ | 7 | 0.56160 | 3 | 7:4 | 0.27346 | 32 | 1.47147 |
9 | 0.62620 | 9:6 | 0.23625 | 44 | 1.34696 | ||
11 | 0.66415 | 11:8 | 0.21766 | 57 | 1.27850 | ||
13 | 0.68886 | 13:10 | 0.20702 | 70 | 1.23510 |
Ⅰ | 7 | 0.39923 | 3 | 7:4 | 0.39522 | 26 | 1.86449 |
8 | 0.46231 | 8:5 | 0.34307 | 32 | 1.69384 | ||
10 | 0.54635 | 10:7 | 0.28318 | 44 | 1.50281 | ||
11 | 0.57515 | 11:8 | 0.26511 | 51 | 1.44432 | ||
13 | 0.61796 | 13:10 | 0.24063 | 63 | 1.36221 | ||
14 | 0.63358 | 14:11 | 0.23244 | 70 | 1.33343 | ||
Ⅱ | 7 | 0.56160 | 3 | 7:4 | 0.27346 | 32 | 1.47147 |
9 | 0.62620 | 9:6 | 0.23625 | 44 | 1.34696 | ||
11 | 0.66415 | 11:8 | 0.21766 | 57 | 1.27850 | ||
13 | 0.68886 | 13:10 | 0.20702 | 70 | 1.23510 |
Ⅰ | 7 | 0.39923 | 3 | 7:4 | 0.39521 | 26 | 1.86534 |
8 | 0.46235 | 8:5 | 0.34303 | 32 | 1.69452 | ||
10 | 0.54630 | 10:7 | 0.28320 | 44 | 1.50361 | ||
11 | 0.57521 | 11:8 | 0.26506 | 51 | 1.44487 | ||
13 | 0.61783 | 13:10 | 0.24068 | 63 | 1.36310 | ||
14 | 0.63380 | 14:11 | 0.23231 | 70 | 1.33366 | ||
Ⅱ | 7 | 0.56158 | 3 | 7:4 | 0.27346 | 32 | 1.47220 |
9 | 0.62616 | 9:6 | 0.23626 | 44 | 1.34767 | ||
11 | 0.66413 | 11:8 | 0.21764 | 57 | 1.2794 | ||
13 | 0.68878 | 13:10 | 0.20702 | 70 | 1.23584 |
Ⅰ | 7 | 0.39923 | 3 | 7:4 | 0.39521 | 26 | 1.86534 |
8 | 0.46235 | 8:5 | 0.34303 | 32 | 1.69452 | ||
10 | 0.54630 | 10:7 | 0.28320 | 44 | 1.50361 | ||
11 | 0.57521 | 11:8 | 0.26506 | 51 | 1.44487 | ||
13 | 0.61783 | 13:10 | 0.24068 | 63 | 1.36310 | ||
14 | 0.63380 | 14:11 | 0.23231 | 70 | 1.33366 | ||
Ⅱ | 7 | 0.56158 | 3 | 7:4 | 0.27346 | 32 | 1.47220 |
9 | 0.62616 | 9:6 | 0.23626 | 44 | 1.34767 | ||
11 | 0.66413 | 11:8 | 0.21764 | 57 | 1.2794 | ||
13 | 0.68878 | 13:10 | 0.20702 | 70 | 1.23584 |
Ⅰ | 11 | 0.36792 | 5 | 11:6 | 0.42357 | 38 | 1.96103 |
12 | 0.41350 | 12:7 | 0.38286 | 44 | 1.82332 | ||
13 | 0.45107 | 13:8 | 0.35190 | 51 | 1.72225 | ||
14 | 0.48277 | 14:9 | 0.32751 | 57 | 1.64406 | ||
16 | 0.53281 | 16:11 | 0.29211 | 70 | 1.53139 | ||
17 | 0.55295 | 17:12 | 0.27893 | 76 | 1.48915 | ||
Ⅱ | 15 | 0.58150 | 5 | 15:10 | 0.26122 | 70 | 1.43180 |
17 | 0.61344 | 17:12 | 0.24307 | 82 | 1.37065 | ||
19 | 0.63733 | 19:14 | 0.23053 | 95 | 1.32660 | ||
21 | 0.65640 | 21:16 | 0.22124 | 107 | 1.29228 | ||
23 | 0.67095 | 23:18 | 0.21460 | 120 | 1.26649 |
Ⅰ | 11 | 0.36792 | 5 | 11:6 | 0.42357 | 38 | 1.96103 |
12 | 0.41350 | 12:7 | 0.38286 | 44 | 1.82332 | ||
13 | 0.45107 | 13:8 | 0.35190 | 51 | 1.72225 | ||
14 | 0.48277 | 14:9 | 0.32751 | 57 | 1.64406 | ||
16 | 0.53281 | 16:11 | 0.29211 | 70 | 1.53139 | ||
17 | 0.55295 | 17:12 | 0.27893 | 76 | 1.48915 | ||
Ⅱ | 15 | 0.58150 | 5 | 15:10 | 0.26122 | 70 | 1.43180 |
17 | 0.61344 | 17:12 | 0.24307 | 82 | 1.37065 | ||
19 | 0.63733 | 19:14 | 0.23053 | 95 | 1.32660 | ||
21 | 0.65640 | 21:16 | 0.22124 | 107 | 1.29228 | ||
23 | 0.67095 | 23:18 | 0.21460 | 120 | 1.26649 |
Ⅰ | 11 | 0.36790 | 5 | 11:6 | 0.42359 | 38 | 1.96199 |
12 | 0.41345 | 12:7 | 0.38289 | 44 | 1.82430 | ||
13 | 0.45118 | 13:8 | 0.35180 | 51 | 1.72276 | ||
14 | 0.48285 | 14:9 | 0.32744 | 57 | 1.64463 | ||
16 | 0.53273 | 16:11 | 0.29216 | 70 | 1.53227 | ||
17 | 0.55264 | 17:12 | 0.27912 | 76 | 1.49047 | ||
Ⅱ | 15 | 0.58152 | 5 | 15:10 | 0.26127 | 70 | 1.43243 |
17 | 0.61335 | 17:12 | 0.24310 | 82 | 1.37146 | ||
19 | 0.63740 | 19:14 | 0.23048 | 95 | 1.32710 | ||
21 | 0.65623 | 21:16 | 0.22130 | 107 | 1.29319 | ||
23 | 0.67119 | 23:18 | 0.21447 | 120 | 1.26667 |
Ⅰ | 11 | 0.36790 | 5 | 11:6 | 0.42359 | 38 | 1.96199 |
12 | 0.41345 | 12:7 | 0.38289 | 44 | 1.82430 | ||
13 | 0.45118 | 13:8 | 0.35180 | 51 | 1.72276 | ||
14 | 0.48285 | 14:9 | 0.32744 | 57 | 1.64463 | ||
16 | 0.53273 | 16:11 | 0.29216 | 70 | 1.53227 | ||
17 | 0.55264 | 17:12 | 0.27912 | 76 | 1.49047 | ||
Ⅱ | 15 | 0.58152 | 5 | 15:10 | 0.26127 | 70 | 1.43243 |
17 | 0.61335 | 17:12 | 0.24310 | 82 | 1.37146 | ||
19 | 0.63740 | 19:14 | 0.23048 | 95 | 1.32710 | ||
21 | 0.65623 | 21:16 | 0.22130 | 107 | 1.29319 | ||
23 | 0.67119 | 23:18 | 0.21447 | 120 | 1.26667 |
[1] |
Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463 |
[2] |
Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090 |
[3] |
Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933 |
[4] |
Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243 |
[5] |
Hyeong-Ohk Bae, Hyoungsuk So, Yeonghun Youn. Interior regularity to the steady incompressible shear thinning fluids with non-Standard growth. Networks & Heterogeneous Media, 2018, 13 (3) : 479-491. doi: 10.3934/nhm.2018021 |
[6] |
V. V. Zhikov, S. E. Pastukhova. Korn inequalities on thin periodic structures. Networks & Heterogeneous Media, 2009, 4 (1) : 153-175. doi: 10.3934/nhm.2009.4.153 |
[7] |
Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475 |
[8] |
Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208 |
[9] |
Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022 |
[10] |
Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021 |
[11] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
[12] |
Shangzhi Li, Shangjiang Guo. Permanence and extinction of a stochastic SIS epidemic model with three independent Brownian motions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2693-2719. doi: 10.3934/dcdsb.2020201 |
[13] |
Qian Liu. The lower bounds on the second-order nonlinearity of three classes of Boolean functions. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020136 |
[14] |
Akio Matsumot, Ferenc Szidarovszky. Stability switching and its directions in cournot duopoly game with three delays. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021069 |
[15] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[16] |
Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277 |
[17] |
Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199 |
[18] |
Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065 |
[19] |
Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075 |
[20] |
Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881 |
2019 Impact Factor: 1.233
Tools
Article outline
Figures and Tables
[Back to Top]