Let $i≥2$, $Δ≥0$, $1≤ a≤ b-Δ$, $n>\frac{(a+b)(ib+2m-2)}{a}+n'$ and $δ(G)≥\frac{b^{2}}{a}+n'+2m$, and let $g,f$ be two integer-valued functions defined on $V(G)$ such that $a≤ g(x)≤ f(x)-Δ≤ b-Δ$ for each $x∈ V(G)$. In this article, it is determined that $G$ is a fractional $(g,f,n',m)$-critical deleted graph if $\max\{d_{1},d_{2},···,d_{i}\}≥\frac{b(n+n')}{a+b}$ for any independent subset $\{x_{1},x_{2},..., x_{i}\}\subseteq V(G)$. The result is tight on independent set degree condition.
Citation: |
J. A. Bondy and U. S. R. Mutry,
Graph Theory, Springer, Berlin, 2008.
doi: 10.1007/978-1-84628-970-5.![]() ![]() ![]() |
|
W. Gao,
Some Results on Fractional Deleted Graphs, Doctoral disdertation of Soochow university, 2012.
![]() |
|
W. Gao and Y. Gao, Toughness condition for a graph to be a fractional (g, f, n)-critical deleted graph, The Scientific World Jo., 2014 (2014), Article ID 369798, 7 pages, http://dx.doi.org/10.1155/2014/369798.
![]() |
|
W. Gao
, L. Liang
, T. W. Xu
and J. X. Zhou
, Tight toughness condition for fractional (g, f, n)-critical graphs, J. Korean Math. Soc., 51 (2014)
, 55-65.
doi: 10.4134/JKMS.2014.51.1.055.![]() ![]() ![]() |
|
W. Gao
, L. Liang
, T. W. Xu
and J. X. Zhou
, Degree conditions for fractional (g, f, n', m)-critical deleted graphs and fractional ID-(g, f, m)-deleted graphs, Bull. Malays. Math. Sci. Soc., 39 (2016)
, 315-330.
doi: 10.1007/s40840-015-0194-1.![]() ![]() ![]() |
|
W. Gao
and M. R. Farahani
, Degree-based indices computation for special chemical molecular structures using edge dividing method, Appl. Math. Nonl. Sc., 1 (2016)
, 94-117.
![]() |
|
W. Gao
and W. F. Wang
, Degree conditions for fractional (k, m)-deleted graphs, Ars. Combin., 113A (2014)
, 273-285.
![]() ![]() |
|
W. Gao
and W. F. Wang
, Toughness and fractional critical deleted graph, Utilitas Math., 98 (2015)
, 295-310.
![]() ![]() |
|
W. Gao
and W. F. Wang
, A tight neighborhood union condition on fractional (g, f, n, m)-critical deleted graphs, Colloq. Math., 149 (2017)
, 291-298.
doi: 10.4064/cm6959-8-2016.![]() ![]() ![]() |
|
W. Gao
and W. F. Wang
, New isolated toughness condition for fractional (g, f, n)-critical graphs, Colloq. Math., 147 (2017)
, 55-65.
doi: 10.4064/cm6713-8-2016.![]() ![]() ![]() |
|
W. Gao
and C. C. Yan
, A note on fractional (k, n', m)-critical deleted graph, Advances in Computational Mathematics and its Applications, 1 (2012)
, 53-55.
![]() |
|
S. Z. Zhou
, A minimum degree condition of fractional (k, m)-deleted graphs, Comptes Rendus Math., 347 (2009)
, 1223-1226.
doi: 10.1016/j.crma.2009.09.022.![]() ![]() ![]() |
|
S. Z. Zhou
, A neighborhood condition for graphs to be fractional (k, m)- deleted graphs, Glasg. Math. J., 52 (2010)
, 33-40.
doi: 10.1017/S0017089509990139.![]() ![]() ![]() |
|
S. Z. Zhou
, A sufficient condition for a graph to be a fractional (f, n)-critical graph, Glasgow Math. J., 52 (2010)
, 409-415.
doi: 10.1017/S001708951000011X.![]() ![]() ![]() |
|
S. Z. Zhou
and H. Liu
, On fractional (k, m)-deleted graphs with constrains conditions, Int. J. Comput. Math. Sci., 5 (2011)
, 130-132.
![]() ![]() |
|
S. Z. Zhou
, A sufficient condition for graphs to be fractional (k, m)-deleted graphs, Appl. Math. Lett., 24 (2011)
, 1533-1538.
doi: 10.1016/j.aml.2011.03.041.![]() ![]() ![]() |
|
S. Z. Zhou
and Q. X. Bian
, An existence theorem on fractional deleted graphs, Period. Math. Hung., 71 (2015)
, 125-133.
doi: 10.1007/s10998-015-0089-9.![]() ![]() ![]() |