• Previous Article
    Wireless sensor network energy efficient coverage method based on intelligent optimization algorithm
  • DCDS-S Home
  • This Issue
  • Next Article
    The perturbed photogravitational restricted three-body problem: Analysis of resonant periodic orbits
August & September  2019, 12(4&5): 877-886. doi: 10.3934/dcdss.2019058

An independent set degree condition for fractional critical deleted graphs

1. 

School of Information Science and Technology, Yunnan Normal University, Kunming 650500, China

2. 

Departamento de Matemática Aplicaday Estadística, Universidad Politécnica de Cartagena, Hospital de Marina, 30203-Cartagena, Región de Murcia, Spain

3. 

Center for Photonics and Smart Materials (CPSM), Zewail City of Science and Technology, Egypt

4. 

Mathematics Department, Faculty of Sciences, Sohag University, Egypt

5. 

Communication and Networks Engineering, Gulf University, Kingdom of Bahrain

6. 

College of Tourism and Geographic Sciences, Yunnan Normal University, Kunming 650500, China

* Corresponding author: Wei Gao(gaowei@ynnu.edu.cn)

Received  November 2017 Revised  January 2018 Published  November 2018

Let $i≥2$, $Δ≥0$, $1≤ a≤ b-Δ$, $n>\frac{(a+b)(ib+2m-2)}{a}+n'$ and $δ(G)≥\frac{b^{2}}{a}+n'+2m$, and let $g,f$ be two integer-valued functions defined on $V(G)$ such that $a≤ g(x)≤ f(x)-Δ≤ b-Δ$ for each $x∈ V(G)$. In this article, it is determined that $G$ is a fractional $(g,f,n',m)$-critical deleted graph if $\max\{d_{1},d_{2},···,d_{i}\}≥\frac{b(n+n')}{a+b}$ for any independent subset $\{x_{1},x_{2},..., x_{i}\}\subseteq V(G)$. The result is tight on independent set degree condition.

Citation: Wei Gao, Juan Luis García Guirao, Mahmoud Abdel-Aty, Wenfei Xi. An independent set degree condition for fractional critical deleted graphs. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 877-886. doi: 10.3934/dcdss.2019058
References:
[1]

J. A. Bondy and U. S. R. Mutry, Graph Theory, Springer, Berlin, 2008. doi: 10.1007/978-1-84628-970-5.  Google Scholar

[2]

W. Gao, Some Results on Fractional Deleted Graphs, Doctoral disdertation of Soochow university, 2012. Google Scholar

[3]

W. Gao and Y. Gao, Toughness condition for a graph to be a fractional (g, f, n)-critical deleted graph, The Scientific World Jo., 2014 (2014), Article ID 369798, 7 pages, http://dx.doi.org/10.1155/2014/369798. Google Scholar

[4]

W. GaoL. LiangT. W. Xu and J. X. Zhou, Tight toughness condition for fractional (g, f, n)-critical graphs, J. Korean Math. Soc., 51 (2014), 55-65.  doi: 10.4134/JKMS.2014.51.1.055.  Google Scholar

[5]

W. GaoL. LiangT. W. Xu and J. X. Zhou, Degree conditions for fractional (g, f, n', m)-critical deleted graphs and fractional ID-(g, f, m)-deleted graphs, Bull. Malays. Math. Sci. Soc., 39 (2016), 315-330.  doi: 10.1007/s40840-015-0194-1.  Google Scholar

[6]

W. Gao and M. R. Farahani, Degree-based indices computation for special chemical molecular structures using edge dividing method, Appl. Math. Nonl. Sc., 1 (2016), 94-117.   Google Scholar

[7]

W. Gao and W. F. Wang, Degree conditions for fractional (k, m)-deleted graphs, Ars. Combin., 113A (2014), 273-285.   Google Scholar

[8]

W. Gao and W. F. Wang, Toughness and fractional critical deleted graph, Utilitas Math., 98 (2015), 295-310.   Google Scholar

[9]

W. Gao and W. F. Wang, A tight neighborhood union condition on fractional (g, f, n, m)-critical deleted graphs, Colloq. Math., 149 (2017), 291-298.  doi: 10.4064/cm6959-8-2016.  Google Scholar

[10]

W. Gao and W. F. Wang, New isolated toughness condition for fractional (g, f, n)-critical graphs, Colloq. Math., 147 (2017), 55-65.  doi: 10.4064/cm6713-8-2016.  Google Scholar

[11]

W. Gao and C. C. Yan, A note on fractional (k, n', m)-critical deleted graph, Advances in Computational Mathematics and its Applications, 1 (2012), 53-55.   Google Scholar

[12]

S. Z. Zhou, A minimum degree condition of fractional (k, m)-deleted graphs, Comptes Rendus Math., 347 (2009), 1223-1226.  doi: 10.1016/j.crma.2009.09.022.  Google Scholar

[13]

S. Z. Zhou, A neighborhood condition for graphs to be fractional (k, m)- deleted graphs, Glasg. Math. J., 52 (2010), 33-40.  doi: 10.1017/S0017089509990139.  Google Scholar

[14]

S. Z. Zhou, A sufficient condition for a graph to be a fractional (f, n)-critical graph, Glasgow Math. J., 52 (2010), 409-415.  doi: 10.1017/S001708951000011X.  Google Scholar

[15]

S. Z. Zhou and H. Liu, On fractional (k, m)-deleted graphs with constrains conditions, Int. J. Comput. Math. Sci., 5 (2011), 130-132.   Google Scholar

[16]

S. Z. Zhou, A sufficient condition for graphs to be fractional (k, m)-deleted graphs, Appl. Math. Lett., 24 (2011), 1533-1538.  doi: 10.1016/j.aml.2011.03.041.  Google Scholar

[17]

S. Z. Zhou and Q. X. Bian, An existence theorem on fractional deleted graphs, Period. Math. Hung., 71 (2015), 125-133.  doi: 10.1007/s10998-015-0089-9.  Google Scholar

show all references

References:
[1]

J. A. Bondy and U. S. R. Mutry, Graph Theory, Springer, Berlin, 2008. doi: 10.1007/978-1-84628-970-5.  Google Scholar

[2]

W. Gao, Some Results on Fractional Deleted Graphs, Doctoral disdertation of Soochow university, 2012. Google Scholar

[3]

W. Gao and Y. Gao, Toughness condition for a graph to be a fractional (g, f, n)-critical deleted graph, The Scientific World Jo., 2014 (2014), Article ID 369798, 7 pages, http://dx.doi.org/10.1155/2014/369798. Google Scholar

[4]

W. GaoL. LiangT. W. Xu and J. X. Zhou, Tight toughness condition for fractional (g, f, n)-critical graphs, J. Korean Math. Soc., 51 (2014), 55-65.  doi: 10.4134/JKMS.2014.51.1.055.  Google Scholar

[5]

W. GaoL. LiangT. W. Xu and J. X. Zhou, Degree conditions for fractional (g, f, n', m)-critical deleted graphs and fractional ID-(g, f, m)-deleted graphs, Bull. Malays. Math. Sci. Soc., 39 (2016), 315-330.  doi: 10.1007/s40840-015-0194-1.  Google Scholar

[6]

W. Gao and M. R. Farahani, Degree-based indices computation for special chemical molecular structures using edge dividing method, Appl. Math. Nonl. Sc., 1 (2016), 94-117.   Google Scholar

[7]

W. Gao and W. F. Wang, Degree conditions for fractional (k, m)-deleted graphs, Ars. Combin., 113A (2014), 273-285.   Google Scholar

[8]

W. Gao and W. F. Wang, Toughness and fractional critical deleted graph, Utilitas Math., 98 (2015), 295-310.   Google Scholar

[9]

W. Gao and W. F. Wang, A tight neighborhood union condition on fractional (g, f, n, m)-critical deleted graphs, Colloq. Math., 149 (2017), 291-298.  doi: 10.4064/cm6959-8-2016.  Google Scholar

[10]

W. Gao and W. F. Wang, New isolated toughness condition for fractional (g, f, n)-critical graphs, Colloq. Math., 147 (2017), 55-65.  doi: 10.4064/cm6713-8-2016.  Google Scholar

[11]

W. Gao and C. C. Yan, A note on fractional (k, n', m)-critical deleted graph, Advances in Computational Mathematics and its Applications, 1 (2012), 53-55.   Google Scholar

[12]

S. Z. Zhou, A minimum degree condition of fractional (k, m)-deleted graphs, Comptes Rendus Math., 347 (2009), 1223-1226.  doi: 10.1016/j.crma.2009.09.022.  Google Scholar

[13]

S. Z. Zhou, A neighborhood condition for graphs to be fractional (k, m)- deleted graphs, Glasg. Math. J., 52 (2010), 33-40.  doi: 10.1017/S0017089509990139.  Google Scholar

[14]

S. Z. Zhou, A sufficient condition for a graph to be a fractional (f, n)-critical graph, Glasgow Math. J., 52 (2010), 409-415.  doi: 10.1017/S001708951000011X.  Google Scholar

[15]

S. Z. Zhou and H. Liu, On fractional (k, m)-deleted graphs with constrains conditions, Int. J. Comput. Math. Sci., 5 (2011), 130-132.   Google Scholar

[16]

S. Z. Zhou, A sufficient condition for graphs to be fractional (k, m)-deleted graphs, Appl. Math. Lett., 24 (2011), 1533-1538.  doi: 10.1016/j.aml.2011.03.041.  Google Scholar

[17]

S. Z. Zhou and Q. X. Bian, An existence theorem on fractional deleted graphs, Period. Math. Hung., 71 (2015), 125-133.  doi: 10.1007/s10998-015-0089-9.  Google Scholar

[1]

Eric Babson and Dmitry N. Kozlov. Topological obstructions to graph colorings. Electronic Research Announcements, 2003, 9: 61-68.

[2]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[3]

Khosro Sayevand, Valeyollah Moradi. A robust computational framework for analyzing fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021022

[4]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

[5]

Zhimin Chen, Kaihui Liu, Xiuxiang Liu. Evaluating vaccination effectiveness of group-specific fractional-dose strategies. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021062

[6]

Huy Dinh, Harbir Antil, Yanlai Chen, Elena Cherkaev, Akil Narayan. Model reduction for fractional elliptic problems using Kato's formula. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021004

[7]

Liangliang Ma. Stability of hydrostatic equilibrium to the 2D fractional Boussinesq equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021068

[8]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[9]

Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113

[10]

Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021019

[11]

Ritu Agarwal, Kritika, Sunil Dutt Purohit, Devendra Kumar. Mathematical modelling of cytosolic calcium concentration distribution using non-local fractional operator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021017

[12]

Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021020

[13]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[14]

Shangzhi Li, Shangjiang Guo. Permanence and extinction of a stochastic SIS epidemic model with three independent Brownian motions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2693-2719. doi: 10.3934/dcdsb.2020201

[15]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[16]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[17]

Fernando P. da Costa, João T. Pinto, Rafael Sasportes. On the convergence to critical scaling profiles in submonolayer deposition models. Kinetic & Related Models, 2018, 11 (6) : 1359-1376. doi: 10.3934/krm.2018053

[18]

Gioconda Moscariello, Antonia Passarelli di Napoli, Carlo Sbordone. Planar ACL-homeomorphisms : Critical points of their components. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1391-1397. doi: 10.3934/cpaa.2010.9.1391

[19]

Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912

[20]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (258)
  • HTML views (642)
  • Cited by (102)

[Back to Top]