-
Previous Article
Wireless sensor network energy efficient coverage method based on intelligent optimization algorithm
- DCDS-S Home
- This Issue
-
Next Article
The perturbed photogravitational restricted three-body problem: Analysis of resonant periodic orbits
An independent set degree condition for fractional critical deleted graphs
1. | School of Information Science and Technology, Yunnan Normal University, Kunming 650500, China |
2. | Departamento de Matemática Aplicaday Estadística, Universidad Politécnica de Cartagena, Hospital de Marina, 30203-Cartagena, Región de Murcia, Spain |
3. | Center for Photonics and Smart Materials (CPSM), Zewail City of Science and Technology, Egypt |
4. | Mathematics Department, Faculty of Sciences, Sohag University, Egypt |
5. | Communication and Networks Engineering, Gulf University, Kingdom of Bahrain |
6. | College of Tourism and Geographic Sciences, Yunnan Normal University, Kunming 650500, China |
Let $i≥2$, $Δ≥0$, $1≤ a≤ b-Δ$, $n>\frac{(a+b)(ib+2m-2)}{a}+n'$ and $δ(G)≥\frac{b^{2}}{a}+n'+2m$, and let $g,f$ be two integer-valued functions defined on $V(G)$ such that $a≤ g(x)≤ f(x)-Δ≤ b-Δ$ for each $x∈ V(G)$. In this article, it is determined that $G$ is a fractional $(g,f,n',m)$-critical deleted graph if $\max\{d_{1},d_{2},···,d_{i}\}≥\frac{b(n+n')}{a+b}$ for any independent subset $\{x_{1},x_{2},..., x_{i}\}\subseteq V(G)$. The result is tight on independent set degree condition.
References:
[1] |
J. A. Bondy and U. S. R. Mutry,
Graph Theory, Springer, Berlin, 2008.
doi: 10.1007/978-1-84628-970-5. |
[2] |
W. Gao, Some Results on Fractional Deleted Graphs, Doctoral disdertation of Soochow university, 2012. Google Scholar |
[3] |
W. Gao and Y. Gao, Toughness condition for a graph to be a fractional (g, f, n)-critical deleted graph, The Scientific World Jo., 2014 (2014), Article ID 369798, 7 pages, http://dx.doi.org/10.1155/2014/369798. Google Scholar |
[4] |
W. Gao, L. Liang, T. W. Xu and J. X. Zhou,
Tight toughness condition for fractional (g, f, n)-critical graphs, J. Korean Math. Soc., 51 (2014), 55-65.
doi: 10.4134/JKMS.2014.51.1.055. |
[5] |
W. Gao, L. Liang, T. W. Xu and J. X. Zhou,
Degree conditions for fractional (g, f, n', m)-critical deleted graphs and fractional ID-(g, f, m)-deleted graphs, Bull. Malays. Math. Sci. Soc., 39 (2016), 315-330.
doi: 10.1007/s40840-015-0194-1. |
[6] |
W. Gao and M. R. Farahani, Degree-based indices computation for special chemical molecular structures using edge dividing method, Appl. Math. Nonl. Sc., 1 (2016), 94-117. Google Scholar |
[7] |
W. Gao and W. F. Wang,
Degree conditions for fractional (k, m)-deleted graphs, Ars. Combin., 113A (2014), 273-285.
|
[8] |
W. Gao and W. F. Wang,
Toughness and fractional critical deleted graph, Utilitas Math., 98 (2015), 295-310.
|
[9] |
W. Gao and W. F. Wang,
A tight neighborhood union condition on fractional (g, f, n, m)-critical deleted graphs, Colloq. Math., 149 (2017), 291-298.
doi: 10.4064/cm6959-8-2016. |
[10] |
W. Gao and W. F. Wang,
New isolated toughness condition for fractional (g, f, n)-critical graphs, Colloq. Math., 147 (2017), 55-65.
doi: 10.4064/cm6713-8-2016. |
[11] |
W. Gao and C. C. Yan, A note on fractional (k, n', m)-critical deleted graph, Advances in Computational Mathematics and its Applications, 1 (2012), 53-55. Google Scholar |
[12] |
S. Z. Zhou,
A minimum degree condition of fractional (k, m)-deleted graphs, Comptes Rendus Math., 347 (2009), 1223-1226.
doi: 10.1016/j.crma.2009.09.022. |
[13] |
S. Z. Zhou,
A neighborhood condition for graphs to be fractional (k, m)- deleted graphs, Glasg. Math. J., 52 (2010), 33-40.
doi: 10.1017/S0017089509990139. |
[14] |
S. Z. Zhou,
A sufficient condition for a graph to be a fractional (f, n)-critical graph, Glasgow Math. J., 52 (2010), 409-415.
doi: 10.1017/S001708951000011X. |
[15] |
S. Z. Zhou and H. Liu,
On fractional (k, m)-deleted graphs with constrains conditions, Int. J. Comput. Math. Sci., 5 (2011), 130-132.
|
[16] |
S. Z. Zhou,
A sufficient condition for graphs to be fractional (k, m)-deleted graphs, Appl. Math. Lett., 24 (2011), 1533-1538.
doi: 10.1016/j.aml.2011.03.041. |
[17] |
S. Z. Zhou and Q. X. Bian,
An existence theorem on fractional deleted graphs, Period. Math. Hung., 71 (2015), 125-133.
doi: 10.1007/s10998-015-0089-9. |
show all references
References:
[1] |
J. A. Bondy and U. S. R. Mutry,
Graph Theory, Springer, Berlin, 2008.
doi: 10.1007/978-1-84628-970-5. |
[2] |
W. Gao, Some Results on Fractional Deleted Graphs, Doctoral disdertation of Soochow university, 2012. Google Scholar |
[3] |
W. Gao and Y. Gao, Toughness condition for a graph to be a fractional (g, f, n)-critical deleted graph, The Scientific World Jo., 2014 (2014), Article ID 369798, 7 pages, http://dx.doi.org/10.1155/2014/369798. Google Scholar |
[4] |
W. Gao, L. Liang, T. W. Xu and J. X. Zhou,
Tight toughness condition for fractional (g, f, n)-critical graphs, J. Korean Math. Soc., 51 (2014), 55-65.
doi: 10.4134/JKMS.2014.51.1.055. |
[5] |
W. Gao, L. Liang, T. W. Xu and J. X. Zhou,
Degree conditions for fractional (g, f, n', m)-critical deleted graphs and fractional ID-(g, f, m)-deleted graphs, Bull. Malays. Math. Sci. Soc., 39 (2016), 315-330.
doi: 10.1007/s40840-015-0194-1. |
[6] |
W. Gao and M. R. Farahani, Degree-based indices computation for special chemical molecular structures using edge dividing method, Appl. Math. Nonl. Sc., 1 (2016), 94-117. Google Scholar |
[7] |
W. Gao and W. F. Wang,
Degree conditions for fractional (k, m)-deleted graphs, Ars. Combin., 113A (2014), 273-285.
|
[8] |
W. Gao and W. F. Wang,
Toughness and fractional critical deleted graph, Utilitas Math., 98 (2015), 295-310.
|
[9] |
W. Gao and W. F. Wang,
A tight neighborhood union condition on fractional (g, f, n, m)-critical deleted graphs, Colloq. Math., 149 (2017), 291-298.
doi: 10.4064/cm6959-8-2016. |
[10] |
W. Gao and W. F. Wang,
New isolated toughness condition for fractional (g, f, n)-critical graphs, Colloq. Math., 147 (2017), 55-65.
doi: 10.4064/cm6713-8-2016. |
[11] |
W. Gao and C. C. Yan, A note on fractional (k, n', m)-critical deleted graph, Advances in Computational Mathematics and its Applications, 1 (2012), 53-55. Google Scholar |
[12] |
S. Z. Zhou,
A minimum degree condition of fractional (k, m)-deleted graphs, Comptes Rendus Math., 347 (2009), 1223-1226.
doi: 10.1016/j.crma.2009.09.022. |
[13] |
S. Z. Zhou,
A neighborhood condition for graphs to be fractional (k, m)- deleted graphs, Glasg. Math. J., 52 (2010), 33-40.
doi: 10.1017/S0017089509990139. |
[14] |
S. Z. Zhou,
A sufficient condition for a graph to be a fractional (f, n)-critical graph, Glasgow Math. J., 52 (2010), 409-415.
doi: 10.1017/S001708951000011X. |
[15] |
S. Z. Zhou and H. Liu,
On fractional (k, m)-deleted graphs with constrains conditions, Int. J. Comput. Math. Sci., 5 (2011), 130-132.
|
[16] |
S. Z. Zhou,
A sufficient condition for graphs to be fractional (k, m)-deleted graphs, Appl. Math. Lett., 24 (2011), 1533-1538.
doi: 10.1016/j.aml.2011.03.041. |
[17] |
S. Z. Zhou and Q. X. Bian,
An existence theorem on fractional deleted graphs, Period. Math. Hung., 71 (2015), 125-133.
doi: 10.1007/s10998-015-0089-9. |
[1] |
Eric Babson and Dmitry N. Kozlov. Topological obstructions to graph colorings. Electronic Research Announcements, 2003, 9: 61-68. |
[2] |
María J. Garrido-Atienza, Bohdan Maslowski, Jana Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088 |
[3] |
Khosro Sayevand, Valeyollah Moradi. A robust computational framework for analyzing fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021022 |
[4] |
Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021021 |
[5] |
Zhimin Chen, Kaihui Liu, Xiuxiang Liu. Evaluating vaccination effectiveness of group-specific fractional-dose strategies. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021062 |
[6] |
Huy Dinh, Harbir Antil, Yanlai Chen, Elena Cherkaev, Akil Narayan. Model reduction for fractional elliptic problems using Kato's formula. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021004 |
[7] |
Liangliang Ma. Stability of hydrostatic equilibrium to the 2D fractional Boussinesq equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021068 |
[8] |
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 |
[9] |
Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113 |
[10] |
Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021019 |
[11] |
Ritu Agarwal, Kritika, Sunil Dutt Purohit, Devendra Kumar. Mathematical modelling of cytosolic calcium concentration distribution using non-local fractional operator. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021017 |
[12] |
Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021020 |
[13] |
Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021023 |
[14] |
Shangzhi Li, Shangjiang Guo. Permanence and extinction of a stochastic SIS epidemic model with three independent Brownian motions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2693-2719. doi: 10.3934/dcdsb.2020201 |
[15] |
Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233 |
[16] |
Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243 |
[17] |
Fernando P. da Costa, João T. Pinto, Rafael Sasportes. On the convergence to critical scaling profiles in submonolayer deposition models. Kinetic & Related Models, 2018, 11 (6) : 1359-1376. doi: 10.3934/krm.2018053 |
[18] |
Gioconda Moscariello, Antonia Passarelli di Napoli, Carlo Sbordone. Planar ACL-homeomorphisms : Critical points of their components. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1391-1397. doi: 10.3934/cpaa.2010.9.1391 |
[19] |
Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912 |
[20] |
Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]