August & September  2019, 12(4&5): 1005-1013. doi: 10.3934/dcdss.2019068

Uniform $L^1$ stability of the inelastic Boltzmann equation with large external force for hard potentials

1. 

Hubei Province Key Laboratory of Intelligent Robots, School of Computer Science and Engineering, Wuhan Institute of Technology, Wuhan, China

2. 

Wuhan inCarCloud Technologies Pte.Ltd. China

3. 

Business School, Sichuan University, Chengdu, China

4. 

Wuhan Winphone Technology Co., Ltd, China

5. 

Chengdu University of Information Technology, Chengdu 610225, China

* Corresponding author: Shaofei Wu

Received  June 2017 Revised  November 2017 Published  November 2018

In this paper, we will study the uniform $L^1$ stability of the inelastic Boltzmann equation. More precisely, according to the existence result on the inelastic Boltzmann equation with external force near vacuum, we obtain the uniform $L^1$ stability estimates of mild solution for the hard potentials under the assumptions on the characteristic generated by force term which can be arbitrarily large. The proof is based on the exponentially decay estimate and Lu's trick in [10].

Citation: Shaofei Wu, Mingqing Wang, Maozhu Jin, Yuntao Zou, Lijun Song. Uniform $L^1$ stability of the inelastic Boltzmann equation with large external force for hard potentials. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1005-1013. doi: 10.3934/dcdss.2019068
References:
[1]

R. J. Alonso, Existence of global solutions to the Cauchy problem for the inelastic Boltzmann equation with near-vacuum data, Indiana Univ. Math. J., 58 (2009), 999-1022.  doi: 10.1512/iumj.2009.58.3506.  Google Scholar

[2]

L. Arkeryd, Stability in $L^1$ for the spatially homogeneous Boltzmann equation, Arch. Ration. Mech. Anal., 103 (1988), 151-167.  doi: 10.1007/BF00251506.  Google Scholar

[3]

C. H. Cheng, Uniform stability of solutions of Boltzmann equation for soft potential with external force, J. Math. Anal. Appl., 352 (2009), 724-732.  doi: 10.1016/j.jmaa.2008.11.027.  Google Scholar

[4]

R. J. DiPerna and P. L. Lions, On the Cauchy problem for Boltzmann equations, Ann. Math., 130 (1989), 321-366.  doi: 10.2307/1971423.  Google Scholar

[5]

R. J. Duan, T. Yang and C. J. Zhu, Global existence to Boltzmann equation with external force in infinite vacuum J. Math. Phys. 46 (2005), 053307, 13pp. doi: 10.1063/1.1899985.  Google Scholar

[6]

R. J. DuanT. Yang and C. J. Zhu, $L^1$ and BV-type stability of the Boltzmann equation with external forces, J. Differential Equations, 227 (2006), 1-28.  doi: 10.1016/j.jde.2006.01.010.  Google Scholar

[7]

S. Y. Ha, $L^1$ stability of the Boltzmann equation for the hard sphere model, Arch. Ration. Mech. Anal., 171 (2004), 279-296.  doi: 10.1007/s00205-004-0321-x.  Google Scholar

[8]

S. Y. Ha, Nonlinear functionals of the Boltzmann equation and uniform stability estimates, J. Differential Equations, 215 (2005), 178-205.  doi: 10.1016/j.jde.2004.07.022.  Google Scholar

[9]

S. Y. Ha, $L^1$-stability of the Boltzmann equation for Maxwellian molecules, Nonlinearity, 18 (2005), 981-1001.  doi: 10.1088/0951-7715/18/3/003.  Google Scholar

[10]

X. Lu, Spatial decay solutions of the Boltzmann equation: Converse properties of long time limiting behavior, SIAM J. Math. Anal., 30 (1999), 1151-1174.  doi: 10.1137/S0036141098334985.  Google Scholar

[11]

J. B. Wei and X. W. Zhang, On the Cauchy problem for the inelastic Boltzmann equation with external force, J. Stat. Phys., 146 (2012), 592-609.  doi: 10.1007/s10955-011-0410-9.  Google Scholar

[12]

J. B. Wei and X. W. Zhang, Infinite energy solutions of the inelastic Boltzmann equation with external force, Acta Mathematica Scientia, 32 (2012), 2131-2140.  doi: 10.1016/S0252-9602(12)60165-9.  Google Scholar

[13]

J. B. Weiand X. W. Zhang, On the inelastic Enskog equation with external force J. Math. Phy. 53 (2012), 103505, 12pp. doi: 10.1063/1.4753988.  Google Scholar

[14]

B. Wennberg, Stability and exponential convergence in $L^p$ for the spatially homogeneous Boltzmann equation, Nonlinear Anal. Theory, Methods Appl., 20 (1993), 935-964.  doi: 10.1016/0362-546X(93)90086-8.  Google Scholar

[15]

Z. G. Wu, $L^1$ and BV-type stability of the inelastic Boltzmann equation near vacuum, Continuum Mech. Thermodyn, 22 (2010), 239-249.  doi: 10.1007/s00161-009-0127-z.  Google Scholar

[16]

S. B. Yun, $L^p$ stability estimate of the Boltzmann equation around a traveling local Maxwellian, J. Differential Equations, 251 (2011), 45-57.  doi: 10.1016/j.jde.2011.03.001.  Google Scholar

show all references

References:
[1]

R. J. Alonso, Existence of global solutions to the Cauchy problem for the inelastic Boltzmann equation with near-vacuum data, Indiana Univ. Math. J., 58 (2009), 999-1022.  doi: 10.1512/iumj.2009.58.3506.  Google Scholar

[2]

L. Arkeryd, Stability in $L^1$ for the spatially homogeneous Boltzmann equation, Arch. Ration. Mech. Anal., 103 (1988), 151-167.  doi: 10.1007/BF00251506.  Google Scholar

[3]

C. H. Cheng, Uniform stability of solutions of Boltzmann equation for soft potential with external force, J. Math. Anal. Appl., 352 (2009), 724-732.  doi: 10.1016/j.jmaa.2008.11.027.  Google Scholar

[4]

R. J. DiPerna and P. L. Lions, On the Cauchy problem for Boltzmann equations, Ann. Math., 130 (1989), 321-366.  doi: 10.2307/1971423.  Google Scholar

[5]

R. J. Duan, T. Yang and C. J. Zhu, Global existence to Boltzmann equation with external force in infinite vacuum J. Math. Phys. 46 (2005), 053307, 13pp. doi: 10.1063/1.1899985.  Google Scholar

[6]

R. J. DuanT. Yang and C. J. Zhu, $L^1$ and BV-type stability of the Boltzmann equation with external forces, J. Differential Equations, 227 (2006), 1-28.  doi: 10.1016/j.jde.2006.01.010.  Google Scholar

[7]

S. Y. Ha, $L^1$ stability of the Boltzmann equation for the hard sphere model, Arch. Ration. Mech. Anal., 171 (2004), 279-296.  doi: 10.1007/s00205-004-0321-x.  Google Scholar

[8]

S. Y. Ha, Nonlinear functionals of the Boltzmann equation and uniform stability estimates, J. Differential Equations, 215 (2005), 178-205.  doi: 10.1016/j.jde.2004.07.022.  Google Scholar

[9]

S. Y. Ha, $L^1$-stability of the Boltzmann equation for Maxwellian molecules, Nonlinearity, 18 (2005), 981-1001.  doi: 10.1088/0951-7715/18/3/003.  Google Scholar

[10]

X. Lu, Spatial decay solutions of the Boltzmann equation: Converse properties of long time limiting behavior, SIAM J. Math. Anal., 30 (1999), 1151-1174.  doi: 10.1137/S0036141098334985.  Google Scholar

[11]

J. B. Wei and X. W. Zhang, On the Cauchy problem for the inelastic Boltzmann equation with external force, J. Stat. Phys., 146 (2012), 592-609.  doi: 10.1007/s10955-011-0410-9.  Google Scholar

[12]

J. B. Wei and X. W. Zhang, Infinite energy solutions of the inelastic Boltzmann equation with external force, Acta Mathematica Scientia, 32 (2012), 2131-2140.  doi: 10.1016/S0252-9602(12)60165-9.  Google Scholar

[13]

J. B. Weiand X. W. Zhang, On the inelastic Enskog equation with external force J. Math. Phy. 53 (2012), 103505, 12pp. doi: 10.1063/1.4753988.  Google Scholar

[14]

B. Wennberg, Stability and exponential convergence in $L^p$ for the spatially homogeneous Boltzmann equation, Nonlinear Anal. Theory, Methods Appl., 20 (1993), 935-964.  doi: 10.1016/0362-546X(93)90086-8.  Google Scholar

[15]

Z. G. Wu, $L^1$ and BV-type stability of the inelastic Boltzmann equation near vacuum, Continuum Mech. Thermodyn, 22 (2010), 239-249.  doi: 10.1007/s00161-009-0127-z.  Google Scholar

[16]

S. B. Yun, $L^p$ stability estimate of the Boltzmann equation around a traveling local Maxwellian, J. Differential Equations, 251 (2011), 45-57.  doi: 10.1016/j.jde.2011.03.001.  Google Scholar

[1]

Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems & Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907

[2]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[3]

Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511

[4]

Christophe Zhang. Internal rapid stabilization of a 1-D linear transport equation with a scalar feedback. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021006

[5]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[6]

Elena K. Kostousova. External polyhedral estimates of reachable sets of discrete-time systems with integral bounds on additive terms. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021015

[7]

Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030

[8]

Nikolaz Gourmelon. Generation of homoclinic tangencies by $C^1$-perturbations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 1-42. doi: 10.3934/dcds.2010.26.1

[9]

Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379

[10]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[11]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[12]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[13]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[14]

Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021005

[15]

Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213

[16]

Carmen Cortázar, M. García-Huidobro, Pilar Herreros, Satoshi Tanaka. On the uniqueness of solutions of a semilinear equation in an annulus. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021029

[17]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[18]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[19]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[20]

Akio Matsumot, Ferenc Szidarovszky. Stability switching and its directions in cournot duopoly game with three delays. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021069

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (117)
  • HTML views (516)
  • Cited by (8)

[Back to Top]