A graph $G = (C, I, E)$ is called a split graph if its vertex set $V$ can be partitioned into a clique $C$ and an independent set $I$. A graph $G = (Y \cup Z, I, E)$ is called a bisplit graph if its vertex set $V$ can be partitioned into three stable sets $I, Y,Z$ such that $Y \cup Z$ induces a complete bipartite graph and an independent set $I$. A connected graph $G$ is called supper-$κ$ (resp. super-$λ$) if every minimum vertex cut (edge cut) of $G$ is the set of neighbors of some vertex (the edges of incident to some vertex) in $G$. In this note, we show that: split graphs and bisplit graphs are super-$κ$ and super-$λ$.
Citation: |
[1] |
J. A. Bondy and U. S. R. Murty,
Graph Theory and Its Application, Academic Press, New York, 1976.
![]() ![]() |
[2] |
A. Brandstät, P. L. Hammer, V. B. Le and V. V. Lozin, Bisplit graphs, Discrete Math., 299 (2005), 11-32.
doi: 10.1016/j.disc.2004.08.046.![]() ![]() ![]() |
[3] |
S. Födes and P. L. Hammer, Split graphs, Congr. Numer., 1 (1977), 311-315.
![]() ![]() |
[4] |
L. T. Guo, C. Qin and X. F. Guo, Super connectivity of Kronecker products of graphs, Information Processing Letters, 110 (2010), 659-661.
doi: 10.1016/j.ipl.2010.05.013.![]() ![]() ![]() |
[5] |
L. T. Guo, W. Yang and X., F. Guo, Super-connectivity of Kronecker products of split graphs, powers of cycles, powers of paths and complete graphs, Applied Mathematics Letters, 26 (2013), 120-123.
doi: 10.1016/j.aml.2012.04.006.![]() ![]() ![]() |
[6] |
M. Metsidik and E. Vumar, Edge vulnerability parameters of bisplit graphs, Computers and Mathematics with Applications, 56 (2008), 1741-1747.
doi: 10.1016/j.camwa.2008.04.015.![]() ![]() ![]() |
[7] |
G. J. Woeginger, The toughness of split graphs, Discrete Math., 190 (1998), 295-297.
doi: 10.1016/S0012-365X(98)00156-3.![]() ![]() ![]() |
[8] |
S. Zhang, Q. Zhang and H. Yang, Vulnerability parameters of split graphs, Int. J. Comput. Math., 85 (2008), 19-23.
doi: 10.1080/00207160701365721.![]() ![]() ![]() |
[9] |
Q. Zhang and S. Zhang, Edge vulnerability parameters of split graphs, Applied Mathematics Letters, 19 (2006), 916-920.
doi: 10.1016/j.aml.2005.09.011.![]() ![]() ![]() |
shuttle graph