
-
Previous Article
Cores and optimal fuzzy communication structures of fuzzy games
- DCDS-S Home
- This Issue
-
Next Article
Three-dimensional computer simulation of twill woven fabric by using polynomial mathematical model
Vulnerability of super connected split graphs and bisplit graphs
1. | School of Applied Mathematics, Xiamen University of Technology, Xiamen, Fujian 361024, China |
2. | School of Science, Jimei University, Xiamen, Fujian 361021, China |
A graph $G = (C, I, E)$ is called a split graph if its vertex set $V$ can be partitioned into a clique $C$ and an independent set $I$. A graph $G = (Y \cup Z, I, E)$ is called a bisplit graph if its vertex set $V$ can be partitioned into three stable sets $I, Y,Z$ such that $Y \cup Z$ induces a complete bipartite graph and an independent set $I$. A connected graph $G$ is called supper-$κ$ (resp. super-$λ$) if every minimum vertex cut (edge cut) of $G$ is the set of neighbors of some vertex (the edges of incident to some vertex) in $G$. In this note, we show that: split graphs and bisplit graphs are super-$κ$ and super-$λ$.
References:
[1] |
J. A. Bondy and U. S. R. Murty,
Graph Theory and Its Application, Academic Press, New York, 1976. |
[2] |
A. Brandst |
[3] |
S. F |
[4] |
L. T. Guo, C. Qin and X. F. Guo,
Super connectivity of Kronecker products of graphs, Information Processing Letters, 110 (2010), 659-661.
doi: 10.1016/j.ipl.2010.05.013. |
[5] |
L. T. Guo, W. Yang and X., F. Guo,
Super-connectivity of Kronecker products of split graphs, powers of cycles, powers of paths and complete graphs, Applied Mathematics Letters, 26 (2013), 120-123.
doi: 10.1016/j.aml.2012.04.006. |
[6] |
M. Metsidik and E. Vumar,
Edge vulnerability parameters of bisplit graphs, Computers and Mathematics with Applications, 56 (2008), 1741-1747.
doi: 10.1016/j.camwa.2008.04.015. |
[7] |
G. J. Woeginger,
The toughness of split graphs, Discrete Math., 190 (1998), 295-297.
doi: 10.1016/S0012-365X(98)00156-3. |
[8] |
S. Zhang, Q. Zhang and H. Yang,
Vulnerability parameters of split graphs, Int. J. Comput. Math., 85 (2008), 19-23.
doi: 10.1080/00207160701365721. |
[9] |
Q. Zhang and S. Zhang,
Edge vulnerability parameters of split graphs, Applied Mathematics Letters, 19 (2006), 916-920.
doi: 10.1016/j.aml.2005.09.011. |
show all references
References:
[1] |
J. A. Bondy and U. S. R. Murty,
Graph Theory and Its Application, Academic Press, New York, 1976. |
[2] |
A. Brandst |
[3] |
S. F |
[4] |
L. T. Guo, C. Qin and X. F. Guo,
Super connectivity of Kronecker products of graphs, Information Processing Letters, 110 (2010), 659-661.
doi: 10.1016/j.ipl.2010.05.013. |
[5] |
L. T. Guo, W. Yang and X., F. Guo,
Super-connectivity of Kronecker products of split graphs, powers of cycles, powers of paths and complete graphs, Applied Mathematics Letters, 26 (2013), 120-123.
doi: 10.1016/j.aml.2012.04.006. |
[6] |
M. Metsidik and E. Vumar,
Edge vulnerability parameters of bisplit graphs, Computers and Mathematics with Applications, 56 (2008), 1741-1747.
doi: 10.1016/j.camwa.2008.04.015. |
[7] |
G. J. Woeginger,
The toughness of split graphs, Discrete Math., 190 (1998), 295-297.
doi: 10.1016/S0012-365X(98)00156-3. |
[8] |
S. Zhang, Q. Zhang and H. Yang,
Vulnerability parameters of split graphs, Int. J. Comput. Math., 85 (2008), 19-23.
doi: 10.1080/00207160701365721. |
[9] |
Q. Zhang and S. Zhang,
Edge vulnerability parameters of split graphs, Applied Mathematics Letters, 19 (2006), 916-920.
doi: 10.1016/j.aml.2005.09.011. |
[1] |
Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems & Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907 |
[2] |
Jong Yoon Hyun, Yoonjin Lee, Yansheng Wu. Connection of $ p $-ary $ t $-weight linear codes to Ramanujan Cayley graphs with $ t+1 $ eigenvalues. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020133 |
[3] |
Raz Kupferman, Cy Maor. The emergence of torsion in the continuum limit of distributed edge-dislocations. Journal of Geometric Mechanics, 2015, 7 (3) : 361-387. doi: 10.3934/jgm.2015.7.361 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]