August & September  2019, 12(4&5): 1311-1325. doi: 10.3934/dcdss.2019090

Efficient extraction algorithm for local fuzzy features of dynamic images

1. 

College of Shipbuilding Engineering, Harbin Engineering University, Harbin, China

2. 

Department of Technology, National Deep Sea Center, Qingdao, China

3. 

Qingdao National Laboratory for Marine Science and Technology, Scientific and Technology Infranstructure Department, Qingdao, China

4. 

Qingdao National Laboratory for Marine Science and Technology, Sharing Platform for Scientific Research Vessels and Infrastructures, Qingdao, China

* Corresponding author: Yunsai Chen

Received  June 2017 Revised  November 2017 Published  November 2018

Aiming at the poor extraction effect of the current extraction algorithm for local fuzzy features of dynamic images and the low extraction accuracy, a new algorithm based on FAST corner is proposed to extract the local fuzzy feature of dynamic images efficiently. Through analyzing the mode distortion existing in the local fuzzy features of dynamic images, and processing the spatial domain of dynamic images by using point processing and neighborhood processing, and processing the image frequency domain by filtering, the preprocessing of dynamic images and the effect of local fuzzy feature extraction of dynamic images are improved. On the basis of this, aiming at the shortcomings of FAST corner extraction of local fuzzy features of dynamic images, this paper puts forward the idea of algorithm optimization, and analyzes the realization process of the improved algorithm to achieve the algorithm optimization processing and complete the local fuzzy feature extraction of dynamic images. Based on the least squares method, the inaccurate local fuzzy features in the dynamic images are removed to ensure the accuracy of feature extraction. Experimental results show that the proposed algorithm can accurately extract the local fuzzy features of dynamic images, and the extraction results are better.

Citation: Yunsai Chen, Zhao Yang, Liang Ma, Peng Li, Yongjie Pang, Xin Zhao, Wenyi Yang. Efficient extraction algorithm for local fuzzy features of dynamic images. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1311-1325. doi: 10.3934/dcdss.2019090
References:
[1]

W. A. AlbukhanajerJ. A. Briffa and Y. Jin, Evolutionary multiobjective image feature extraction in the presence of noise, IEEE Trans Cybern, 45 (2015), 1757-1768. 

[2]

C. B., W. J.L., L. C.Q. and et al, Target recognition method via naive bayes combination and simulation sar, Journal of China Academy of Electronics and Information Technology, 73-77.

[3]

J. BensmailR. Duvignau and S. Kirgizov, The complexity of deciding whether a graph admits an orientation with fixed weak diameter, Discrete Mathematics and Theoretical Computer Science, 17 (2016), 31-42. 

[4]

G. ChenC. Li and W. Sun, Hyperspectral face recognition via feature extraction and crc-based classifier, Iet Image Processing, 11 (2017), 266-272. 

[5]

R. DasS. Thepade and S. Ghosh, Framework for content-based image identification with standardized multiview features, Etri Journal, 38 (2016), 174-184. 

[6]

L. Guan, W. Xie and J. Pei, Segmented Minimum Noise Fraction Transformation for Efficient Feature Extraction of Hyperspectral Images, 10, Elsevier Science Inc., 2015.

[7]

J. M. Guo and H. Prasetyo, Content-based image retrieval using features extracted from halftoning-based block truncation coding, IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society, 24 (2015), 1010-1024.  doi: 10.1109/TIP.2014.2372619.

[8]

M. C. HuK. S. NgP. Y. ChenY. J. Hsiao and C. H. Li, Local binary pattern circuit generator with adjustable parameters for feature extraction, IEEE Transactions on Intelligent Transportation Systems, PP (2017), 1-10. 

[9]

U. G. Indahl and T. Naes, Evaluation of alternative spectral feature extraction methods of textural images for multivariate modelling, Journal of Chemometrics, 12 (2015), 261-278. 

[10]

S. Jiang, Movement action mark analysis based on body contour feature extraction, Bulletin of Science and Technology, 84-86.

[11]

J. Y. JungS. W. KimC. H. YooW. J. Park and S. J. Ko, Lbp-ferns-based feature extraction for robust facial recognition, IEEE Transactions on Consumer Electronics, 62 (2017), 446-453. 

[12]

P. KnagJ. K. KimT. Chen and Z. Zhang, A sparse coding neural network asic with on-chip learning for feature extraction and encoding, IEEE Journal of Solid-State Circuits, 50 (2015), 1070-1079. 

[13]

S. Linbo and Q. Huayun, Performance of financial expenditure in china's basic science and math education: Panel data analysis based on ccr model and bbc model, Eurasia Journal of Mathematics Science and Technology Education, 13 (2017), 5217-5224. 

[14]

Y. LuoY. WenD. TaoJ. Gui and C. Xu, Large margin multi-modal multi-task feature extraction for image classification, IEEE Transactions on Image Processing, 25 (2015), 414-427.  doi: 10.1109/TIP.2015.2495116.

[15]

A. TamJ. Barker and D. Rubin, A method for normalizing pathology images to improve feature extraction for quantitative pathology, Medical Physics, 43 (2016), 528-537. 

[16]

J. TangB. DavvazX. Y. Xie and N. Yaqoob, On fuzzy interior -hyperideals in ordered -semihypergroups, Journal of Intelligent & Fuzzy Systems, 32 (2017), 2447-2460. 

[17]

H. Wang and S. Song, Image classification based on kcpa feature extraction and rvm, Journal of Jilin University (Science Edition), 357-362.

[18]

W. WeiY. Zhang and C. Tian, Latent subclass learning-based unsupervised ensemble feature extraction method for hyperspectral image classification, Remote Sensing Letters, 6 (2015), 257-266. 

[19]

F. Y. Wu, Remote sensing image processing based on multi-scale geometric transformation algorithm, Journal of Discrete Mathematical Sciences & Cryptography, 20 (2017), 309-321. 

[20]

L. U. Xiao-Ya and D. U. Li-Juan, Fuzzy biological image feature extraction simulation research, Computer Simulation, 397-400.

[21]

Z. Y., D. Y. and Z. X. Y., Image quality assessment based on complementary local feature extraction and quantification, Electronics Letters, 1849-1851.

[22]

L. YanJ. B. LiX. Zhu and J. S. Pan, Bilinear discriminant feature line analysis for image feature extraction, Electronics Letters, 51 (2015), 336-338. 

[23]

L. YuK. ZhouY. Yang and H. Chen, Bionic rstn invariant feature extraction method for image recognition and its application, Iet Image Processing, 11 (2017), 227-236. 

show all references

References:
[1]

W. A. AlbukhanajerJ. A. Briffa and Y. Jin, Evolutionary multiobjective image feature extraction in the presence of noise, IEEE Trans Cybern, 45 (2015), 1757-1768. 

[2]

C. B., W. J.L., L. C.Q. and et al, Target recognition method via naive bayes combination and simulation sar, Journal of China Academy of Electronics and Information Technology, 73-77.

[3]

J. BensmailR. Duvignau and S. Kirgizov, The complexity of deciding whether a graph admits an orientation with fixed weak diameter, Discrete Mathematics and Theoretical Computer Science, 17 (2016), 31-42. 

[4]

G. ChenC. Li and W. Sun, Hyperspectral face recognition via feature extraction and crc-based classifier, Iet Image Processing, 11 (2017), 266-272. 

[5]

R. DasS. Thepade and S. Ghosh, Framework for content-based image identification with standardized multiview features, Etri Journal, 38 (2016), 174-184. 

[6]

L. Guan, W. Xie and J. Pei, Segmented Minimum Noise Fraction Transformation for Efficient Feature Extraction of Hyperspectral Images, 10, Elsevier Science Inc., 2015.

[7]

J. M. Guo and H. Prasetyo, Content-based image retrieval using features extracted from halftoning-based block truncation coding, IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society, 24 (2015), 1010-1024.  doi: 10.1109/TIP.2014.2372619.

[8]

M. C. HuK. S. NgP. Y. ChenY. J. Hsiao and C. H. Li, Local binary pattern circuit generator with adjustable parameters for feature extraction, IEEE Transactions on Intelligent Transportation Systems, PP (2017), 1-10. 

[9]

U. G. Indahl and T. Naes, Evaluation of alternative spectral feature extraction methods of textural images for multivariate modelling, Journal of Chemometrics, 12 (2015), 261-278. 

[10]

S. Jiang, Movement action mark analysis based on body contour feature extraction, Bulletin of Science and Technology, 84-86.

[11]

J. Y. JungS. W. KimC. H. YooW. J. Park and S. J. Ko, Lbp-ferns-based feature extraction for robust facial recognition, IEEE Transactions on Consumer Electronics, 62 (2017), 446-453. 

[12]

P. KnagJ. K. KimT. Chen and Z. Zhang, A sparse coding neural network asic with on-chip learning for feature extraction and encoding, IEEE Journal of Solid-State Circuits, 50 (2015), 1070-1079. 

[13]

S. Linbo and Q. Huayun, Performance of financial expenditure in china's basic science and math education: Panel data analysis based on ccr model and bbc model, Eurasia Journal of Mathematics Science and Technology Education, 13 (2017), 5217-5224. 

[14]

Y. LuoY. WenD. TaoJ. Gui and C. Xu, Large margin multi-modal multi-task feature extraction for image classification, IEEE Transactions on Image Processing, 25 (2015), 414-427.  doi: 10.1109/TIP.2015.2495116.

[15]

A. TamJ. Barker and D. Rubin, A method for normalizing pathology images to improve feature extraction for quantitative pathology, Medical Physics, 43 (2016), 528-537. 

[16]

J. TangB. DavvazX. Y. Xie and N. Yaqoob, On fuzzy interior -hyperideals in ordered -semihypergroups, Journal of Intelligent & Fuzzy Systems, 32 (2017), 2447-2460. 

[17]

H. Wang and S. Song, Image classification based on kcpa feature extraction and rvm, Journal of Jilin University (Science Edition), 357-362.

[18]

W. WeiY. Zhang and C. Tian, Latent subclass learning-based unsupervised ensemble feature extraction method for hyperspectral image classification, Remote Sensing Letters, 6 (2015), 257-266. 

[19]

F. Y. Wu, Remote sensing image processing based on multi-scale geometric transformation algorithm, Journal of Discrete Mathematical Sciences & Cryptography, 20 (2017), 309-321. 

[20]

L. U. Xiao-Ya and D. U. Li-Juan, Fuzzy biological image feature extraction simulation research, Computer Simulation, 397-400.

[21]

Z. Y., D. Y. and Z. X. Y., Image quality assessment based on complementary local feature extraction and quantification, Electronics Letters, 1849-1851.

[22]

L. YanJ. B. LiX. Zhu and J. S. Pan, Bilinear discriminant feature line analysis for image feature extraction, Electronics Letters, 51 (2015), 336-338. 

[23]

L. YuK. ZhouY. Yang and H. Chen, Bionic rstn invariant feature extraction method for image recognition and its application, Iet Image Processing, 11 (2017), 227-236. 

Figure 1.  Construction of the Gaussian pyramid
Figure 2.  FAST feature detection block diagram
Figure 3.  Composition of the eigenvector
Figure 4.  Images used in the experiment
Figure 5.  Preprocessing effect analysis using the proposed algorithm
Figure 6.  Comparison of image feature extraction effect of different algorithms
[1]

Shichu Chen, Zhiqiang Wang, Yan Ren. A fast matching algorithm for the images with large scale disparity. Mathematical Foundations of Computing, 2020, 3 (3) : 141-155. doi: 10.3934/mfc.2020021

[2]

Qiang Yin, Gongfa Li, Jianguo Zhu. Research on the method of step feature extraction for EOD robot based on 2D laser radar. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1415-1421. doi: 10.3934/dcdss.2015.8.1415

[3]

Behrad Erfani, Sadoullah Ebrahimnejad, Amirhossein Moosavi. An integrated dynamic facility layout and job shop scheduling problem: A hybrid NSGA-II and local search algorithm. Journal of Industrial and Management Optimization, 2020, 16 (4) : 1801-1834. doi: 10.3934/jimo.2019030

[4]

Hui Xu, Guangbin Cai, Xiaogang Yang, Erliang Yao, Xiaofeng Li. Stereo visual odometry based on dynamic and static features division. Journal of Industrial and Management Optimization, 2022, 18 (3) : 2109-2128. doi: 10.3934/jimo.2021059

[5]

Xueyan Wu. An algorithm for reversible information hiding of encrypted medical images in homomorphic encrypted domain. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1441-1455. doi: 10.3934/dcdss.2019099

[6]

Karol Mikula, Róbert Špir, Nadine Peyriéras. Numerical algorithm for tracking cell dynamics in 4D biomedical images. Discrete and Continuous Dynamical Systems - S, 2015, 8 (5) : 953-967. doi: 10.3934/dcdss.2015.8.953

[7]

Yong Wang, Wanquan Liu, Guanglu Zhou. An efficient algorithm for non-convex sparse optimization. Journal of Industrial and Management Optimization, 2019, 15 (4) : 2009-2021. doi: 10.3934/jimo.2018134

[8]

Yi Zhang, Xiao-Li Ma. Research on image digital watermarking optimization algorithm under virtual reality technology. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1427-1440. doi: 10.3934/dcdss.2019098

[9]

Xin Li, Ziguan Cui, Linhui Sun, Guanming Lu, Debnath Narayan. Research on iterative repair algorithm of Hyperchaotic image based on support vector machine. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1199-1218. doi: 10.3934/dcdss.2019083

[10]

Yinhua Xia, Yan Xu, Chi-Wang Shu. Efficient time discretization for local discontinuous Galerkin methods. Discrete and Continuous Dynamical Systems - B, 2007, 8 (3) : 677-693. doi: 10.3934/dcdsb.2007.8.677

[11]

Editorial Office. Retraction: Xiaohong Zhu, Lihe Zhou, Zili Yang and Joyati Debnath, A new text information extraction algorithm of video image under multimedia environment. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1265-1265. doi: 10.3934/dcdss.2019087

[12]

Nguyen Van Thoai. Decomposition branch and bound algorithm for optimization problems over efficient sets. Journal of Industrial and Management Optimization, 2008, 4 (4) : 647-660. doi: 10.3934/jimo.2008.4.647

[13]

Tran Ngoc Thang, Nguyen Thi Bach Kim. Outcome space algorithm for generalized multiplicative problems and optimization over the efficient set. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1417-1433. doi: 10.3934/jimo.2016.12.1417

[14]

Lipu Zhang, Yinghong Xu, Zhengjing Jin. An efficient algorithm for convex quadratic semi-definite optimization. Numerical Algebra, Control and Optimization, 2012, 2 (1) : 129-144. doi: 10.3934/naco.2012.2.129

[15]

Wenjuan Jia, Yingjie Deng, Chenyang Xin, Xiaodong Liu, Witold Pedrycz. A classification algorithm with Linear Discriminant Analysis and Axiomatic Fuzzy Sets. Mathematical Foundations of Computing, 2019, 2 (1) : 73-81. doi: 10.3934/mfc.2019006

[16]

Yi Jiang, Chuan Luo, Shenggui Ling. An efficient cutting plane algorithm for the smallest enclosing circle problem. Journal of Industrial and Management Optimization, 2017, 13 (1) : 147-153. doi: 10.3934/jimo.2016009

[17]

Jingwen Zhang, Wanjun Liu, Wanlin Liu. An efficient genetic algorithm for decentralized multi-project scheduling with resource transfers. Journal of Industrial and Management Optimization, 2022, 18 (1) : 1-24. doi: 10.3934/jimo.2020140

[18]

Hongming Yang, C. Y. Chung, Xiaojiao Tong, Pingping Bing. Research on dynamic equilibrium of power market with complex network constraints based on nonlinear complementarity function. Journal of Industrial and Management Optimization, 2008, 4 (3) : 617-630. doi: 10.3934/jimo.2008.4.617

[19]

Zhanyou Ma, Wenbo Wang, Wuyi Yue, Yutaka Takahashi. Performance analysis and optimization research of multi-channel cognitive radio networks with a dynamic channel vacation scheme. Journal of Industrial and Management Optimization, 2022, 18 (1) : 95-110. doi: 10.3934/jimo.2020144

[20]

Editorial Office. Retraction: Xiaohong Zhu, Zili Yang and Tabharit Zoubir, Research on the matching algorithm for heterologous image after deformation in the same scene. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1281-1281. doi: 10.3934/dcdss.2019088

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (383)
  • HTML views (687)
  • Cited by (0)

[Back to Top]