August & September  2019, 12(4&5): 1311-1325. doi: 10.3934/dcdss.2019090

Efficient extraction algorithm for local fuzzy features of dynamic images

1. 

College of Shipbuilding Engineering, Harbin Engineering University, Harbin, China

2. 

Department of Technology, National Deep Sea Center, Qingdao, China

3. 

Qingdao National Laboratory for Marine Science and Technology, Scientific and Technology Infranstructure Department, Qingdao, China

4. 

Qingdao National Laboratory for Marine Science and Technology, Sharing Platform for Scientific Research Vessels and Infrastructures, Qingdao, China

* Corresponding author: Yunsai Chen

Received  June 2017 Revised  November 2017 Published  November 2018

Aiming at the poor extraction effect of the current extraction algorithm for local fuzzy features of dynamic images and the low extraction accuracy, a new algorithm based on FAST corner is proposed to extract the local fuzzy feature of dynamic images efficiently. Through analyzing the mode distortion existing in the local fuzzy features of dynamic images, and processing the spatial domain of dynamic images by using point processing and neighborhood processing, and processing the image frequency domain by filtering, the preprocessing of dynamic images and the effect of local fuzzy feature extraction of dynamic images are improved. On the basis of this, aiming at the shortcomings of FAST corner extraction of local fuzzy features of dynamic images, this paper puts forward the idea of algorithm optimization, and analyzes the realization process of the improved algorithm to achieve the algorithm optimization processing and complete the local fuzzy feature extraction of dynamic images. Based on the least squares method, the inaccurate local fuzzy features in the dynamic images are removed to ensure the accuracy of feature extraction. Experimental results show that the proposed algorithm can accurately extract the local fuzzy features of dynamic images, and the extraction results are better.

Citation: Yunsai Chen, Zhao Yang, Liang Ma, Peng Li, Yongjie Pang, Xin Zhao, Wenyi Yang. Efficient extraction algorithm for local fuzzy features of dynamic images. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1311-1325. doi: 10.3934/dcdss.2019090
References:
[1]

W. A. AlbukhanajerJ. A. Briffa and Y. Jin, Evolutionary multiobjective image feature extraction in the presence of noise, IEEE Trans Cybern, 45 (2015), 1757-1768.   Google Scholar

[2]

C. B., W. J.L., L. C.Q. and et al, Target recognition method via naive bayes combination and simulation sar, Journal of China Academy of Electronics and Information Technology, 73-77. Google Scholar

[3]

J. BensmailR. Duvignau and S. Kirgizov, The complexity of deciding whether a graph admits an orientation with fixed weak diameter, Discrete Mathematics and Theoretical Computer Science, 17 (2016), 31-42.   Google Scholar

[4]

G. ChenC. Li and W. Sun, Hyperspectral face recognition via feature extraction and crc-based classifier, Iet Image Processing, 11 (2017), 266-272.   Google Scholar

[5]

R. DasS. Thepade and S. Ghosh, Framework for content-based image identification with standardized multiview features, Etri Journal, 38 (2016), 174-184.   Google Scholar

[6]

L. Guan, W. Xie and J. Pei, Segmented Minimum Noise Fraction Transformation for Efficient Feature Extraction of Hyperspectral Images, 10, Elsevier Science Inc., 2015. Google Scholar

[7]

J. M. Guo and H. Prasetyo, Content-based image retrieval using features extracted from halftoning-based block truncation coding, IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society, 24 (2015), 1010-1024.  doi: 10.1109/TIP.2014.2372619.  Google Scholar

[8]

M. C. HuK. S. NgP. Y. ChenY. J. Hsiao and C. H. Li, Local binary pattern circuit generator with adjustable parameters for feature extraction, IEEE Transactions on Intelligent Transportation Systems, PP (2017), 1-10.   Google Scholar

[9]

U. G. Indahl and T. Naes, Evaluation of alternative spectral feature extraction methods of textural images for multivariate modelling, Journal of Chemometrics, 12 (2015), 261-278.   Google Scholar

[10]

S. Jiang, Movement action mark analysis based on body contour feature extraction, Bulletin of Science and Technology, 84-86. Google Scholar

[11]

J. Y. JungS. W. KimC. H. YooW. J. Park and S. J. Ko, Lbp-ferns-based feature extraction for robust facial recognition, IEEE Transactions on Consumer Electronics, 62 (2017), 446-453.   Google Scholar

[12]

P. KnagJ. K. KimT. Chen and Z. Zhang, A sparse coding neural network asic with on-chip learning for feature extraction and encoding, IEEE Journal of Solid-State Circuits, 50 (2015), 1070-1079.   Google Scholar

[13]

S. Linbo and Q. Huayun, Performance of financial expenditure in china's basic science and math education: Panel data analysis based on ccr model and bbc model, Eurasia Journal of Mathematics Science and Technology Education, 13 (2017), 5217-5224.   Google Scholar

[14]

Y. LuoY. WenD. TaoJ. Gui and C. Xu, Large margin multi-modal multi-task feature extraction for image classification, IEEE Transactions on Image Processing, 25 (2015), 414-427.  doi: 10.1109/TIP.2015.2495116.  Google Scholar

[15]

A. TamJ. Barker and D. Rubin, A method for normalizing pathology images to improve feature extraction for quantitative pathology, Medical Physics, 43 (2016), 528-537.   Google Scholar

[16]

J. TangB. DavvazX. Y. Xie and N. Yaqoob, On fuzzy interior -hyperideals in ordered -semihypergroups, Journal of Intelligent & Fuzzy Systems, 32 (2017), 2447-2460.   Google Scholar

[17]

H. Wang and S. Song, Image classification based on kcpa feature extraction and rvm, Journal of Jilin University (Science Edition), 357-362.  Google Scholar

[18]

W. WeiY. Zhang and C. Tian, Latent subclass learning-based unsupervised ensemble feature extraction method for hyperspectral image classification, Remote Sensing Letters, 6 (2015), 257-266.   Google Scholar

[19]

F. Y. Wu, Remote sensing image processing based on multi-scale geometric transformation algorithm, Journal of Discrete Mathematical Sciences & Cryptography, 20 (2017), 309-321.   Google Scholar

[20]

L. U. Xiao-Ya and D. U. Li-Juan, Fuzzy biological image feature extraction simulation research, Computer Simulation, 397-400. Google Scholar

[21]

Z. Y., D. Y. and Z. X. Y., Image quality assessment based on complementary local feature extraction and quantification, Electronics Letters, 1849-1851. Google Scholar

[22]

L. YanJ. B. LiX. Zhu and J. S. Pan, Bilinear discriminant feature line analysis for image feature extraction, Electronics Letters, 51 (2015), 336-338.   Google Scholar

[23]

L. YuK. ZhouY. Yang and H. Chen, Bionic rstn invariant feature extraction method for image recognition and its application, Iet Image Processing, 11 (2017), 227-236.   Google Scholar

show all references

References:
[1]

W. A. AlbukhanajerJ. A. Briffa and Y. Jin, Evolutionary multiobjective image feature extraction in the presence of noise, IEEE Trans Cybern, 45 (2015), 1757-1768.   Google Scholar

[2]

C. B., W. J.L., L. C.Q. and et al, Target recognition method via naive bayes combination and simulation sar, Journal of China Academy of Electronics and Information Technology, 73-77. Google Scholar

[3]

J. BensmailR. Duvignau and S. Kirgizov, The complexity of deciding whether a graph admits an orientation with fixed weak diameter, Discrete Mathematics and Theoretical Computer Science, 17 (2016), 31-42.   Google Scholar

[4]

G. ChenC. Li and W. Sun, Hyperspectral face recognition via feature extraction and crc-based classifier, Iet Image Processing, 11 (2017), 266-272.   Google Scholar

[5]

R. DasS. Thepade and S. Ghosh, Framework for content-based image identification with standardized multiview features, Etri Journal, 38 (2016), 174-184.   Google Scholar

[6]

L. Guan, W. Xie and J. Pei, Segmented Minimum Noise Fraction Transformation for Efficient Feature Extraction of Hyperspectral Images, 10, Elsevier Science Inc., 2015. Google Scholar

[7]

J. M. Guo and H. Prasetyo, Content-based image retrieval using features extracted from halftoning-based block truncation coding, IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society, 24 (2015), 1010-1024.  doi: 10.1109/TIP.2014.2372619.  Google Scholar

[8]

M. C. HuK. S. NgP. Y. ChenY. J. Hsiao and C. H. Li, Local binary pattern circuit generator with adjustable parameters for feature extraction, IEEE Transactions on Intelligent Transportation Systems, PP (2017), 1-10.   Google Scholar

[9]

U. G. Indahl and T. Naes, Evaluation of alternative spectral feature extraction methods of textural images for multivariate modelling, Journal of Chemometrics, 12 (2015), 261-278.   Google Scholar

[10]

S. Jiang, Movement action mark analysis based on body contour feature extraction, Bulletin of Science and Technology, 84-86. Google Scholar

[11]

J. Y. JungS. W. KimC. H. YooW. J. Park and S. J. Ko, Lbp-ferns-based feature extraction for robust facial recognition, IEEE Transactions on Consumer Electronics, 62 (2017), 446-453.   Google Scholar

[12]

P. KnagJ. K. KimT. Chen and Z. Zhang, A sparse coding neural network asic with on-chip learning for feature extraction and encoding, IEEE Journal of Solid-State Circuits, 50 (2015), 1070-1079.   Google Scholar

[13]

S. Linbo and Q. Huayun, Performance of financial expenditure in china's basic science and math education: Panel data analysis based on ccr model and bbc model, Eurasia Journal of Mathematics Science and Technology Education, 13 (2017), 5217-5224.   Google Scholar

[14]

Y. LuoY. WenD. TaoJ. Gui and C. Xu, Large margin multi-modal multi-task feature extraction for image classification, IEEE Transactions on Image Processing, 25 (2015), 414-427.  doi: 10.1109/TIP.2015.2495116.  Google Scholar

[15]

A. TamJ. Barker and D. Rubin, A method for normalizing pathology images to improve feature extraction for quantitative pathology, Medical Physics, 43 (2016), 528-537.   Google Scholar

[16]

J. TangB. DavvazX. Y. Xie and N. Yaqoob, On fuzzy interior -hyperideals in ordered -semihypergroups, Journal of Intelligent & Fuzzy Systems, 32 (2017), 2447-2460.   Google Scholar

[17]

H. Wang and S. Song, Image classification based on kcpa feature extraction and rvm, Journal of Jilin University (Science Edition), 357-362.  Google Scholar

[18]

W. WeiY. Zhang and C. Tian, Latent subclass learning-based unsupervised ensemble feature extraction method for hyperspectral image classification, Remote Sensing Letters, 6 (2015), 257-266.   Google Scholar

[19]

F. Y. Wu, Remote sensing image processing based on multi-scale geometric transformation algorithm, Journal of Discrete Mathematical Sciences & Cryptography, 20 (2017), 309-321.   Google Scholar

[20]

L. U. Xiao-Ya and D. U. Li-Juan, Fuzzy biological image feature extraction simulation research, Computer Simulation, 397-400. Google Scholar

[21]

Z. Y., D. Y. and Z. X. Y., Image quality assessment based on complementary local feature extraction and quantification, Electronics Letters, 1849-1851. Google Scholar

[22]

L. YanJ. B. LiX. Zhu and J. S. Pan, Bilinear discriminant feature line analysis for image feature extraction, Electronics Letters, 51 (2015), 336-338.   Google Scholar

[23]

L. YuK. ZhouY. Yang and H. Chen, Bionic rstn invariant feature extraction method for image recognition and its application, Iet Image Processing, 11 (2017), 227-236.   Google Scholar

Figure 1.  Construction of the Gaussian pyramid
Figure 2.  FAST feature detection block diagram
Figure 3.  Composition of the eigenvector
Figure 4.  Images used in the experiment
Figure 5.  Preprocessing effect analysis using the proposed algorithm
Figure 6.  Comparison of image feature extraction effect of different algorithms
[1]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[2]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[3]

Jingni Guo, Junxiang Xu, Zhenggang He, Wei Liao. Research on cascading failure modes and attack strategies of multimodal transport network. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2020159

[4]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[5]

Demetres D. Kouvatsos, Jumma S. Alanazi, Kevin Smith. A unified ME algorithm for arbitrary open QNMs with mixed blocking mechanisms. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 781-816. doi: 10.3934/naco.2011.1.781

[6]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[7]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[8]

Jon Aaronson, Dalia Terhesiu. Local limit theorems for suspended semiflows. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6575-6609. doi: 10.3934/dcds.2020294

[9]

Xianchao Xiu, Ying Yang, Wanquan Liu, Lingchen Kong, Meijuan Shang. An improved total variation regularized RPCA for moving object detection with dynamic background. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1685-1698. doi: 10.3934/jimo.2019024

[10]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021035

[11]

Jonathan DeWitt. Local Lyapunov spectrum rigidity of nilmanifold automorphisms. Journal of Modern Dynamics, 2021, 17: 65-109. doi: 10.3934/jmd.2021003

[12]

Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034

[13]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448

[14]

Ritu Agarwal, Kritika, Sunil Dutt Purohit, Devendra Kumar. Mathematical modelling of cytosolic calcium concentration distribution using non-local fractional operator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021017

[15]

Mao Okada. Local rigidity of certain actions of solvable groups on the boundaries of rank-one symmetric spaces. Journal of Modern Dynamics, 2021, 17: 111-143. doi: 10.3934/jmd.2021004

[16]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (151)
  • HTML views (474)
  • Cited by (0)

[Back to Top]