August & September  2019, 12(4&5): 1341-1354. doi: 10.3934/dcdss.2019092

Optimization algorithm for embedded Linux remote video monitoring system oriented to the internet of things (IOT)

1. 

School of Mathematics and Computer Science, Shanxi Datong University, Datong, China

2. 

Department of Computer Science, Winona State University, Winona, MN 55987, USA

* Corresponding author: Wenbo Fu

Received  August 2017 Revised  January 2018 Published  November 2018

At present, the remote video monitoring system has the problem of weak anti-interference ability and poor response of the system. Therefore, the video image is not clear. On the basis of the Internet of things (IOT), a design method of embedded Linux remote video monitoring system is proposed. The method is based on ARM+Linux development platform, the 301V USB camera of Vimicro is used to collect images, to make preprocessing, and improve the system's response. The embedded Linux operating system is used to realize the functions of data acquisition and transmission of video image. The fractal wavelet of multivariate statistical model is used to denoise the video image so as to improve the anti-interference of the system. The experimental results show that the method has strong anti-interference ability and good response to the system.

Citation: Wenbo Fu, Debnath Narayan. Optimization algorithm for embedded Linux remote video monitoring system oriented to the internet of things (IOT). Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1341-1354. doi: 10.3934/dcdss.2019092
References:
[1]

J. E. Banchs and D. L. Scher, Emerging role of digital technology and remote monitoring in the care of cardiac patients, Medical Clinics of North America, 99 (2015), 877-896.   Google Scholar

[2]

D. G. Dietlein, A method for remote monitoring of activity of honeybee colonies by sound analysis, Journal of Apicultural Research, 24 (1985), 176-183.   Google Scholar

[3]

O. FrederikJ. R. DanarajB. FleetH. GunasinghamS. Jaenicke and V. E. Hodgkinson, Remote monitoring and control of electrochemical experiments via the internet using ''intelligent agent'' software, Electroanalysis, 11 (2015), 1027-1032.   Google Scholar

[4]

F. GonzeR. M. Jungers and A. N. Trahtman, A note on a recent attempt to improve the pin-frankl bound, Behavioural Brain Research, 17 (2015), 307-308.   Google Scholar

[5]

N. J., N. F., B. S. and et al, Biometric recognition in monitoring scenarios: A survey, Artificial Intelligence Review, 515-541. Google Scholar

[6]

S. K., Z. Y., Z. G. and et al, Long-term remote monitoring of total suspended matter concentration in lake taihu using 250 m modis-aqua data, Remote Sensing of Environment, 62 (2015), 43-56. Google Scholar

[7]

L. M. KallinenR. G. HauserC. TangD. P. MelbyA. K. AlmquistW. T. Katsiyiannis and C. C. Gornick, Lead integrity alert algorithm decreases inappropriate shocks in patients who have sprint fidelis pace-sense conductor fractures., Heart Rhythm, 7 (2010), 368-377.   Google Scholar

[8]

B. KatalenichL. ShiS. LiuH. ShaoR. McduffieG. CarpioT. Thethi and V. Fonseca, Evaluation of a remote monitoring system for diabetes control, Clinical Therapeutics, 37 (2015), 1216-1225.   Google Scholar

[9]

R. KosakaY. SankaiR. TakiyaT. JikuyaT. Yamane and T. Tsutsui, Tsukuba remote monitoring system for continuous-flow artificial heart., Artificial Organs, 27 (2015), 897-906.   Google Scholar

[10]

N. KumarJ. H. Lee and J. J. P. C. Rodrigues, Intelligent mobile video surveillance system as a bayesian coalition game in vehicular sensor networks: Learning automata approach, IEEE Transactions on Intelligent Transportation Systems, 16 (2015), 1148-1161.   Google Scholar

[11]

X. L., X. H. K., H. X. and et al, Remote video monitoring optimization method research based on internet of things, Environmental Earth Sciences, 72 (2015), 226-228. Google Scholar

[12]

T. Lewalter and T. Brodherr, Remote monitoring of implantable cardioverter-defibrillators: Financial impact for providers and benefits to patients, European Heart Journal, 36 (2015), 143.   Google Scholar

[13]

N. Liu, W. Chen, Q. Wang and Y. Lang, Remote video monitoring and early warning system based on android platform, Journal of Jilin University, 283-288. Google Scholar

[14]

B. M. A., L. S. R., C. M. J. and et al, Eight-week remote monitoring using a freely worn device reveals unstable gait patterns in older fallers, IEEE Transactions on Biomedical Engineering, 27 (2015), 2588-2594. Google Scholar

[15]

N. ParthibanA. EstermanR. MahajanD. J. TwomeyR. K. PathakD.H. LauK. C. RobertsthomsonG. D. YoungP. Sanders and A. N. Ganesan, Remote monitoring of implantable cardioverter-defibrillators: A systematic review and meta-analysis of clinical outcomes., Pacing Clin Electrophysiol, 27 (2015), 2591-2600.   Google Scholar

[16]

K. Q. and G. B., Remote virtual supervision system, European Journal of Soil Science, 79-89. Google Scholar

[17]

E. S. RamírezD. Luis and E. Perez, Web monitoring module for video surveillance system xilema suria, Bulletin of the American Meteorological Society, 91 (2015), 1699-1701.   Google Scholar

[18]

H. U. Rong, X. Q. Luo and H. E. Shang-Ping, Simulation study on the human motion characteristics monitoring of remote video image, Computer Simulation, 298-301. Google Scholar

[19]

F. H. Tsai, An investigation of gender differences in a game-based learning environment with different game modes., Eurasia Journal of Mathematics Science & Technology Education, 13 (2017), 3209-3226.   Google Scholar

[20]

N. VarmaJ. P. PicciniJ. SnellA. FischerN. Dalal and S. Mittal, Relationship between level of adherence to automatic wireless remote monitoring and survival in pacemaker and defibrillator patients, Journal of the American College of Cardiology, 65 (2015), 2601-2610.   Google Scholar

[21]

J. WangB. TianJ. LuD. MacdonaldJ. Wang and D. Luo, Renewable-reagent enzyme inhibition sensor for remote monitoring of cyanide, Electroanalysis, 10 (2015), 1034-1037.   Google Scholar

[22]

Y. G. Wang, The effect of reservoir projects on the household income of indigenous people an empirical analysis based on gangkouwan reservoir project, Journal of Interdisciplinary Mathematics, 20 (2017), 195-207.   Google Scholar

[23]

L. I. Xiao-Hui, Research on the open architecture of iot, Journal of China Academy of Electronics & Information Technology, 478-482 Google Scholar

[24]

H. YangX. Liu and L. Zhang, Observer-based tracking control using unmeasurable premise variables for time-delay switched fuzzy systems, Journal of Intelligent & Fuzzy Systems, 32 (2017), 3973-3985.   Google Scholar

show all references

References:
[1]

J. E. Banchs and D. L. Scher, Emerging role of digital technology and remote monitoring in the care of cardiac patients, Medical Clinics of North America, 99 (2015), 877-896.   Google Scholar

[2]

D. G. Dietlein, A method for remote monitoring of activity of honeybee colonies by sound analysis, Journal of Apicultural Research, 24 (1985), 176-183.   Google Scholar

[3]

O. FrederikJ. R. DanarajB. FleetH. GunasinghamS. Jaenicke and V. E. Hodgkinson, Remote monitoring and control of electrochemical experiments via the internet using ''intelligent agent'' software, Electroanalysis, 11 (2015), 1027-1032.   Google Scholar

[4]

F. GonzeR. M. Jungers and A. N. Trahtman, A note on a recent attempt to improve the pin-frankl bound, Behavioural Brain Research, 17 (2015), 307-308.   Google Scholar

[5]

N. J., N. F., B. S. and et al, Biometric recognition in monitoring scenarios: A survey, Artificial Intelligence Review, 515-541. Google Scholar

[6]

S. K., Z. Y., Z. G. and et al, Long-term remote monitoring of total suspended matter concentration in lake taihu using 250 m modis-aqua data, Remote Sensing of Environment, 62 (2015), 43-56. Google Scholar

[7]

L. M. KallinenR. G. HauserC. TangD. P. MelbyA. K. AlmquistW. T. Katsiyiannis and C. C. Gornick, Lead integrity alert algorithm decreases inappropriate shocks in patients who have sprint fidelis pace-sense conductor fractures., Heart Rhythm, 7 (2010), 368-377.   Google Scholar

[8]

B. KatalenichL. ShiS. LiuH. ShaoR. McduffieG. CarpioT. Thethi and V. Fonseca, Evaluation of a remote monitoring system for diabetes control, Clinical Therapeutics, 37 (2015), 1216-1225.   Google Scholar

[9]

R. KosakaY. SankaiR. TakiyaT. JikuyaT. Yamane and T. Tsutsui, Tsukuba remote monitoring system for continuous-flow artificial heart., Artificial Organs, 27 (2015), 897-906.   Google Scholar

[10]

N. KumarJ. H. Lee and J. J. P. C. Rodrigues, Intelligent mobile video surveillance system as a bayesian coalition game in vehicular sensor networks: Learning automata approach, IEEE Transactions on Intelligent Transportation Systems, 16 (2015), 1148-1161.   Google Scholar

[11]

X. L., X. H. K., H. X. and et al, Remote video monitoring optimization method research based on internet of things, Environmental Earth Sciences, 72 (2015), 226-228. Google Scholar

[12]

T. Lewalter and T. Brodherr, Remote monitoring of implantable cardioverter-defibrillators: Financial impact for providers and benefits to patients, European Heart Journal, 36 (2015), 143.   Google Scholar

[13]

N. Liu, W. Chen, Q. Wang and Y. Lang, Remote video monitoring and early warning system based on android platform, Journal of Jilin University, 283-288. Google Scholar

[14]

B. M. A., L. S. R., C. M. J. and et al, Eight-week remote monitoring using a freely worn device reveals unstable gait patterns in older fallers, IEEE Transactions on Biomedical Engineering, 27 (2015), 2588-2594. Google Scholar

[15]

N. ParthibanA. EstermanR. MahajanD. J. TwomeyR. K. PathakD.H. LauK. C. RobertsthomsonG. D. YoungP. Sanders and A. N. Ganesan, Remote monitoring of implantable cardioverter-defibrillators: A systematic review and meta-analysis of clinical outcomes., Pacing Clin Electrophysiol, 27 (2015), 2591-2600.   Google Scholar

[16]

K. Q. and G. B., Remote virtual supervision system, European Journal of Soil Science, 79-89. Google Scholar

[17]

E. S. RamírezD. Luis and E. Perez, Web monitoring module for video surveillance system xilema suria, Bulletin of the American Meteorological Society, 91 (2015), 1699-1701.   Google Scholar

[18]

H. U. Rong, X. Q. Luo and H. E. Shang-Ping, Simulation study on the human motion characteristics monitoring of remote video image, Computer Simulation, 298-301. Google Scholar

[19]

F. H. Tsai, An investigation of gender differences in a game-based learning environment with different game modes., Eurasia Journal of Mathematics Science & Technology Education, 13 (2017), 3209-3226.   Google Scholar

[20]

N. VarmaJ. P. PicciniJ. SnellA. FischerN. Dalal and S. Mittal, Relationship between level of adherence to automatic wireless remote monitoring and survival in pacemaker and defibrillator patients, Journal of the American College of Cardiology, 65 (2015), 2601-2610.   Google Scholar

[21]

J. WangB. TianJ. LuD. MacdonaldJ. Wang and D. Luo, Renewable-reagent enzyme inhibition sensor for remote monitoring of cyanide, Electroanalysis, 10 (2015), 1034-1037.   Google Scholar

[22]

Y. G. Wang, The effect of reservoir projects on the household income of indigenous people an empirical analysis based on gangkouwan reservoir project, Journal of Interdisciplinary Mathematics, 20 (2017), 195-207.   Google Scholar

[23]

L. I. Xiao-Hui, Research on the open architecture of iot, Journal of China Academy of Electronics & Information Technology, 478-482 Google Scholar

[24]

H. YangX. Liu and L. Zhang, Observer-based tracking control using unmeasurable premise variables for time-delay switched fuzzy systems, Journal of Intelligent & Fuzzy Systems, 32 (2017), 3973-3985.   Google Scholar

Figure 1.  the overall architecture of embedded Linux remote video monitoring system
Figure 2.  The framework of Linux device driver
Figure 3.  hierarchical structure of USB subsystem
Figure 4.  flow chart of video capture
Figure 5.  hardware development platform
Figure 6.  test results of three different methods
Figure 7.  system monitoring images
Figure 8.  the transmission of data by three different methods
[1]

Zhihua Zhang, Naoki Saito. PHLST with adaptive tiling and its application to antarctic remote sensing image approximation. Inverse Problems & Imaging, 2014, 8 (1) : 321-337. doi: 10.3934/ipi.2014.8.321

[2]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[3]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[4]

Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228

[5]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[6]

Eduardo Casas, Christian Clason, Arnd Rösch. Preface special issue on system modeling and optimization. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021008

[7]

Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379

[8]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[9]

Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393

[10]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[11]

Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2599-2623. doi: 10.3934/dcdsb.2020197

[12]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[13]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[14]

Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81

[15]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[16]

Ying Yang. Global classical solutions to two-dimensional chemotaxis-shallow water system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2625-2643. doi: 10.3934/dcdsb.2020198

[17]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1631-1648. doi: 10.3934/dcdss.2020447

[18]

Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194

[19]

Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030

[20]

Bo Duan, Zhengce Zhang. A reaction-diffusion-advection two-species competition system with a free boundary in heterogeneous environment. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021067

2019 Impact Factor: 1.233

Article outline

Figures and Tables

[Back to Top]