• Previous Article
    An optimization detection algorithm for complex intrusion interference signal in mobile wireless network
  • DCDS-S Home
  • This Issue
  • Next Article
    Optimization algorithm for embedded Linux remote video monitoring system oriented to the internet of things (IOT)
August & September  2019, 12(4&5): 1355-1369. doi: 10.3934/dcdss.2019093

Optical chaotic secure algorithm based on space laser communication

1. 

College of Electronic Information Engineering, Changchun University of Science and Technology, Changchun, China

2. 

College of Humanities & Information, Changchun University of Technology, Changchun, China

* Corresponding author: Lu Song

Received  June 2017 Revised  November 2017 Published  November 2018

The traditional drive response synchronization control method has the poor robustness, which results in the low security performance of the optical chaotic secure communication. To address this problem, an optical chaotic secure algorithm based on space laser communication is proposed in this paper. With the advantage of space laser communication and full consideration of the influence of complex environment on signal transmission of laser wireless communication, a laser wireless communication channel model is built. Based on this, a hybrid self-synchronization chaotic system model is proposed. It can reduce the information needed for transmission, and only need to transmit a small amount of error correction signals on the channel to achieve synchronization of the receiving and the transmitting system, which greatly suppress the drawback of the traditional method. On the basis of chaotic synchronization, the erbium-doped fiber laser is used for information transmission. Different encryption techniques are used to achieve optical chaotic secure communication within the allowable range of error. Numerical simulation results show that the proposed algorithm has good security and robustness, and can realize the secure communication for different signals.

Citation: Ruiqiang Guo, Lu Song. Optical chaotic secure algorithm based on space laser communication. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1355-1369. doi: 10.3934/dcdss.2019093
References:
[1]

V. Annovazzi-Lodi and G. Aromataris, Privacy in two-laser and three-laser chaos communications, IEEE Journal of Quantum Electronics, 51 (2015), 1-5.   Google Scholar

[2]

H. W. ChenG. C. YangC. Y. ChangT. C. Lin and W. C. Kwong, Enhancing optical-cdma confidentiality with multicode-keying encryption, Journal of Lightwave Technology, 27 (2015), 1708-1718.   Google Scholar

[3]

M. ChengX. GaoL. DengL. LiuY. DengS. FuM. Zhang and D. Liu, Time-delay concealment in a three-dimensional electro-optic chaos system, IEEE Photonics Technology Letters, 27 (2015), 1030-1033.   Google Scholar

[4]

A. ElsonbatyS. F. Hegazy and S. S. A. Obayya, Simultaneous suppression of time-delay signature in intensity and phase of dual-channel chaos communication, IEEE Journal of Quantum Electronics, 51 (2015), 1-9.   Google Scholar

[5]

L. I. Feng and Y. F. Zhang, Network communication encryption method based on the structure of semigroup simulation, Computer Simulation, 280-283. Google Scholar

[6]

W. Gao and M. R. Farahani, The hyper-zagreb index for an infinite family of nanostar dendrimer, Journal of Discrete Mathematical Sciences & Cryptography, 20 (2016), 515-523.   Google Scholar

[7]

S. K. Y., C. F., W. T. T. and et al, Full state based adaptive control of fractional order chaotic system without equilibrium point, Journal of Jilin University (Engineering and Technology Edition), 138 (2017), 1225-1230 Google Scholar

[8]

T. LanY. LanP. Chen and W. Lo, A study of investigating adolescents' eating out behavior by using analytic hierarchy process, Eurasia Journal of Mathematics Science and Technology Education, 13 (2016), 3227-3234.   Google Scholar

[9]

A. J. Lawrance, T. Papamarkou and A. Uchida, Synchronized laser chaos communication: Statistical investigation of an experimental system, IEEE Journal of Quantum Electronics, 1-1. Google Scholar

[10]

N. LiH. SusantoB. CemlynI. D. Henning and M. J. Adams, Secure communication systems based on chaos in optically pumped spin-vcsels., Optics Letters, 42 (2017), 3494-3497.   Google Scholar

[11]

L. LiuY. N. WangL. Hou and X. R. Feng, Easy encoding and low bit-error-rate chaos communication system based on reverse-time chaotic oscillator, Iet Signal Processing, 11 (2017), 869-876.   Google Scholar

[12]

D. S. Mao, Connotation of quantum cascaded lasers technology and its application prospect, Journal of China Academy of Electronics & Information Technology, 333-340. Google Scholar

[13]

S. Nazari-ShirkouhiS. Miri-Nargesi and A. Ansarinejad, A fuzzy decision making methodology based on fuzzy ahp and fuzzy topsis with a case study for information systems outsourcing decisions, Journal of Intelligent & Fuzzy Systems, 32 (2017), 3921-3943.   Google Scholar

[14]

L. Q. J., Information hiding algorithm based on frequency band division key frames coding, Bulletin of Science and Technology, 120-122. Google Scholar

[15]

D. RontaniE. MercierD. Wolfersberger and M. Sciamanna, Enhanced complexity of optical chaos in a laser diode with phase-conjugate feedback, Optics Letters, 41 (2016), 4637-4640.   Google Scholar

[16]

L. I. ShileiC. LiuH. U. Xiaoyu and N. I. Junkang, A chaotic oscillator with high security for secret communication, Journal of Xian Jiaotong University, 51 (2017), 35-40.   Google Scholar

[17]

L. WangZ. M. WuJ. G. Wu and G. Q. Xia, Long-haul dual-channel bidirectional chaos communication based on polarization-resolved chaos synchronization between twin 1550 nm vcsels subject to variable-polarization optical injection, Optics Communications, 334 (2015), 214-221.   Google Scholar

[18]

T. T. Wang and C. H. Ma, A re-examination of expectation hypothesis with time varying term premium, Journal of Interdisciplinary Mathematics, 20 (2017), 1-12.   Google Scholar

[19]

C. XueN. JiangY. LvC. WangG. LiS. Lin and K. Qiu, Security-enhanced chaos communication with time-delay signature suppression and phase encryption, Optics Letters, 41 (2016), 3690.   Google Scholar

show all references

References:
[1]

V. Annovazzi-Lodi and G. Aromataris, Privacy in two-laser and three-laser chaos communications, IEEE Journal of Quantum Electronics, 51 (2015), 1-5.   Google Scholar

[2]

H. W. ChenG. C. YangC. Y. ChangT. C. Lin and W. C. Kwong, Enhancing optical-cdma confidentiality with multicode-keying encryption, Journal of Lightwave Technology, 27 (2015), 1708-1718.   Google Scholar

[3]

M. ChengX. GaoL. DengL. LiuY. DengS. FuM. Zhang and D. Liu, Time-delay concealment in a three-dimensional electro-optic chaos system, IEEE Photonics Technology Letters, 27 (2015), 1030-1033.   Google Scholar

[4]

A. ElsonbatyS. F. Hegazy and S. S. A. Obayya, Simultaneous suppression of time-delay signature in intensity and phase of dual-channel chaos communication, IEEE Journal of Quantum Electronics, 51 (2015), 1-9.   Google Scholar

[5]

L. I. Feng and Y. F. Zhang, Network communication encryption method based on the structure of semigroup simulation, Computer Simulation, 280-283. Google Scholar

[6]

W. Gao and M. R. Farahani, The hyper-zagreb index for an infinite family of nanostar dendrimer, Journal of Discrete Mathematical Sciences & Cryptography, 20 (2016), 515-523.   Google Scholar

[7]

S. K. Y., C. F., W. T. T. and et al, Full state based adaptive control of fractional order chaotic system without equilibrium point, Journal of Jilin University (Engineering and Technology Edition), 138 (2017), 1225-1230 Google Scholar

[8]

T. LanY. LanP. Chen and W. Lo, A study of investigating adolescents' eating out behavior by using analytic hierarchy process, Eurasia Journal of Mathematics Science and Technology Education, 13 (2016), 3227-3234.   Google Scholar

[9]

A. J. Lawrance, T. Papamarkou and A. Uchida, Synchronized laser chaos communication: Statistical investigation of an experimental system, IEEE Journal of Quantum Electronics, 1-1. Google Scholar

[10]

N. LiH. SusantoB. CemlynI. D. Henning and M. J. Adams, Secure communication systems based on chaos in optically pumped spin-vcsels., Optics Letters, 42 (2017), 3494-3497.   Google Scholar

[11]

L. LiuY. N. WangL. Hou and X. R. Feng, Easy encoding and low bit-error-rate chaos communication system based on reverse-time chaotic oscillator, Iet Signal Processing, 11 (2017), 869-876.   Google Scholar

[12]

D. S. Mao, Connotation of quantum cascaded lasers technology and its application prospect, Journal of China Academy of Electronics & Information Technology, 333-340. Google Scholar

[13]

S. Nazari-ShirkouhiS. Miri-Nargesi and A. Ansarinejad, A fuzzy decision making methodology based on fuzzy ahp and fuzzy topsis with a case study for information systems outsourcing decisions, Journal of Intelligent & Fuzzy Systems, 32 (2017), 3921-3943.   Google Scholar

[14]

L. Q. J., Information hiding algorithm based on frequency band division key frames coding, Bulletin of Science and Technology, 120-122. Google Scholar

[15]

D. RontaniE. MercierD. Wolfersberger and M. Sciamanna, Enhanced complexity of optical chaos in a laser diode with phase-conjugate feedback, Optics Letters, 41 (2016), 4637-4640.   Google Scholar

[16]

L. I. ShileiC. LiuH. U. Xiaoyu and N. I. Junkang, A chaotic oscillator with high security for secret communication, Journal of Xian Jiaotong University, 51 (2017), 35-40.   Google Scholar

[17]

L. WangZ. M. WuJ. G. Wu and G. Q. Xia, Long-haul dual-channel bidirectional chaos communication based on polarization-resolved chaos synchronization between twin 1550 nm vcsels subject to variable-polarization optical injection, Optics Communications, 334 (2015), 214-221.   Google Scholar

[18]

T. T. Wang and C. H. Ma, A re-examination of expectation hypothesis with time varying term premium, Journal of Interdisciplinary Mathematics, 20 (2017), 1-12.   Google Scholar

[19]

C. XueN. JiangY. LvC. WangG. LiS. Lin and K. Qiu, Security-enhanced chaos communication with time-delay signature suppression and phase encryption, Optics Letters, 41 (2016), 3690.   Google Scholar

Figure 1.  Optical chaotic self-synchronization model based on space laser communication
Figure 2.  Optical chaotic secure communication structure based on erbium-doped fiber single-ring laser
Figure 3.  Optical chaotic secure communication structure based on erbium-doped fiber double-ring laser
Figure 4.  Time history of drive signal
Figure 5.  Test result of sinusoidal signal secure communication
Figure 6.  Test result of square wave signal secure communication
[1]

Marat Akhmet, Ejaily Milad Alejaily. Abstract similarity, fractals and chaos. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2479-2497. doi: 10.3934/dcdsb.2020191

[2]

Palash Sarkar, Subhadip Singha. Verifying solutions to LWE with implications for concrete security. Advances in Mathematics of Communications, 2021, 15 (2) : 257-266. doi: 10.3934/amc.2020057

[3]

Alexey Yulin, Alan Champneys. Snake-to-isola transition and moving solitons via symmetry-breaking in discrete optical cavities. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1341-1357. doi: 10.3934/dcdss.2011.4.1341

[4]

Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009

[5]

Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190

[6]

Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 307-320. doi: 10.3934/naco.2020027

[7]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

[8]

Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199

[9]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

2019 Impact Factor: 1.233

Article outline

Figures and Tables

[Back to Top]