
-
Previous Article
Multi-machine and multi-task emergency allocation algorithm based on precedence rules
- DCDS-S Home
- This Issue
-
Next Article
EMD and GNN-AdaBoost fault diagnosis for urban rail train rolling bearings
An efficient RFID anonymous batch authentication protocol based on group signature
1. | School of Information and Control Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, China |
2. | The State Key Laboratory of Integrated Service Networks, Xidian University, Xi'an 710071, China |
In order to address the anonymous batch authentication problem of a legal reader to many tags in RFID (Radio Frequency Identification) system, an efficient RFID anonymous batch authentication protocol was proposed based on group signature. The anonymous batch authentications of reader to many tags are achieved by using a one-time group signature based on Hash function; the authentication of the tag to the reader is realized by employing MAC (Message Authentication Code). The tag's anonymity is achieved via the dynamic TID (Temporary Identity) instead of the tag's identity. The proposed protocol can resist replay attacks by using random number. Theoretical analyses show that, the proposed protocol reaches the expected security goals. Compared with the protocol proposed by Liu, the proposed protocol reduces the computation and storage of the server and tag while improving the security.
References:
[1] |
M. Akram and M. Sarwar,
Novel applications of m-polar fuzzy hypergraphs, Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology, 32 (2017), 2747-2762.
|
[2] |
W.-S. Bae,
Formal verification of an RFID authentication protocol based on Hash function and secret code, Wireless Personal Communications, 79 (2014), 2595-2609.
|
[3] |
A. Basar and M. Y. Abbasi,
On ordered bi-ideals in ordered-semigroups, Journal of Discrete Mathematical Sciences and Cryptography, 20 (2017), 645-652.
doi: 10.1080/09720529.2015.1130474. |
[4] |
L. Batina, Y. K. Lee and S. Seys, et al., Extending ECC-based RFID authentication protocols to privacy-preserving multi-party grouping proofs, Personal and Ubiquitous Computing, 16 (2012), 323-335. |
[5] |
X. Cao, W. Kou and H. Li, Secure mobile IP registration scheme with AAA from parings to reduce registration delay, CIS 2006, New York: IEEE Press, 2006, 1037-1042 |
[6] |
W. Gao and W. F. Wang,
A tight neighborhood union condition on fractional (g, f, n', m)-critical deleted graphs, Colloquium Mathematicum, 149 (2017), 291-298.
doi: 10.4064/cm6959-8-2016. |
[7] |
J. B. Gurubani, H. Thakkar and D. R. Patel, Improvements over extended LMAP+: RFID authentication protocol, Proceedings of 6th International Conference on Trust Management IFIPTM, Surat: Springer Boston, 2012, 225-231. |
[8] |
D. He, N. Kumar and N. Chilamkurti, et al., Lightweight ECC based RFID authentication integrated with an ID verifier transfer protocol, Journal of Medical Systems, 38 (2014), 116. |
[9] |
A. Juels, Strengthening EPC Tag against Cloning, Proceedings of ACM Workshop on Wireless Security, Cologne, 2005, 67-76. |
[10] |
M. Kianersi, M. Gardeshi and M. Arjmand,
SULMA: A secure ultra light-weight mutual authentication protocol for lowcost RFID tags, International Journal of UbiComp (IJU), 2 (2011), 17-24.
|
[11] |
S. Li,
Handwritten character recognition technology combined with artificial intelligence, Journal of Discrete Mathematical Sciences and Cryptography, 20 (2017), 167-178.
|
[12] |
H. Liu, X. Li and J. Bai,
A new one-time group signature based on Hash function, Journal of Beijing Electronic Science and Technology Institute, 21 (2013), 25-29.
|
[13] |
J. Liu, R.-J. Chen and D.-S. Yan, et al., Efficient identity-based ring signature for RFID authentication scheme, Proceeding of the IEEE International Conference on RFID-Technology and Applications, Guangzhou: IEEE, 2010, 7-10. |
[14] |
Y. L. Liu, X. L. Qin and B. H. Li, et al., A Forward-Secure Grouping-proof protocol for Multiple RFID tags, International Journal of Computational Intelligence Systems, 5 (2012), 824-833. |
[15] |
M. Ohkubo, K. Suzuki and S. Kinoshita, Hash-chain based forward secure privacy protection scheme for low-cost RFID, Proceedings of the 2004 Symposium on Cryptography and Information Security (SCIS 2004), Sendai, 2004, 719-724. |
[16] |
S. E. Sarma, S. A. Weis and D. W. Engels, RFID systems and security and privacy implications, Proceedings of the 4th International Workshop on Cryptographic Hardware and Embedded Systems (CHES 2002), LNCS, 2523, Berlin: Springer-Verlag, 2003, 454-469. |
[17] |
Y. Tian, G. L. Chen and J. Li,
A New Ultralightweight RFID Authentication Protocol with Permutation, IEEE Communications Letters, 16 (2012), 702-705.
|
[18] |
S. A. Weis, S. E. Sarma, R. L. Rivest and D. W. Engels, Security and privacy aspects of lowcost radio frequency identification systems, Proceedings of the 1st International Conference on Security in Pervasive Computing, LNCS, 2802, Berlin: Springer-Verlag, 2004, 719-724. |
[19] |
J. P. de Wet and S. A. van Aardt,
Traceability of locally Hamiltonian and locally traceable graphs, Discrete Mathematics and Theoretical Computer Science, 17 (2016), 245-262.
|
show all references
References:
[1] |
M. Akram and M. Sarwar,
Novel applications of m-polar fuzzy hypergraphs, Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology, 32 (2017), 2747-2762.
|
[2] |
W.-S. Bae,
Formal verification of an RFID authentication protocol based on Hash function and secret code, Wireless Personal Communications, 79 (2014), 2595-2609.
|
[3] |
A. Basar and M. Y. Abbasi,
On ordered bi-ideals in ordered-semigroups, Journal of Discrete Mathematical Sciences and Cryptography, 20 (2017), 645-652.
doi: 10.1080/09720529.2015.1130474. |
[4] |
L. Batina, Y. K. Lee and S. Seys, et al., Extending ECC-based RFID authentication protocols to privacy-preserving multi-party grouping proofs, Personal and Ubiquitous Computing, 16 (2012), 323-335. |
[5] |
X. Cao, W. Kou and H. Li, Secure mobile IP registration scheme with AAA from parings to reduce registration delay, CIS 2006, New York: IEEE Press, 2006, 1037-1042 |
[6] |
W. Gao and W. F. Wang,
A tight neighborhood union condition on fractional (g, f, n', m)-critical deleted graphs, Colloquium Mathematicum, 149 (2017), 291-298.
doi: 10.4064/cm6959-8-2016. |
[7] |
J. B. Gurubani, H. Thakkar and D. R. Patel, Improvements over extended LMAP+: RFID authentication protocol, Proceedings of 6th International Conference on Trust Management IFIPTM, Surat: Springer Boston, 2012, 225-231. |
[8] |
D. He, N. Kumar and N. Chilamkurti, et al., Lightweight ECC based RFID authentication integrated with an ID verifier transfer protocol, Journal of Medical Systems, 38 (2014), 116. |
[9] |
A. Juels, Strengthening EPC Tag against Cloning, Proceedings of ACM Workshop on Wireless Security, Cologne, 2005, 67-76. |
[10] |
M. Kianersi, M. Gardeshi and M. Arjmand,
SULMA: A secure ultra light-weight mutual authentication protocol for lowcost RFID tags, International Journal of UbiComp (IJU), 2 (2011), 17-24.
|
[11] |
S. Li,
Handwritten character recognition technology combined with artificial intelligence, Journal of Discrete Mathematical Sciences and Cryptography, 20 (2017), 167-178.
|
[12] |
H. Liu, X. Li and J. Bai,
A new one-time group signature based on Hash function, Journal of Beijing Electronic Science and Technology Institute, 21 (2013), 25-29.
|
[13] |
J. Liu, R.-J. Chen and D.-S. Yan, et al., Efficient identity-based ring signature for RFID authentication scheme, Proceeding of the IEEE International Conference on RFID-Technology and Applications, Guangzhou: IEEE, 2010, 7-10. |
[14] |
Y. L. Liu, X. L. Qin and B. H. Li, et al., A Forward-Secure Grouping-proof protocol for Multiple RFID tags, International Journal of Computational Intelligence Systems, 5 (2012), 824-833. |
[15] |
M. Ohkubo, K. Suzuki and S. Kinoshita, Hash-chain based forward secure privacy protection scheme for low-cost RFID, Proceedings of the 2004 Symposium on Cryptography and Information Security (SCIS 2004), Sendai, 2004, 719-724. |
[16] |
S. E. Sarma, S. A. Weis and D. W. Engels, RFID systems and security and privacy implications, Proceedings of the 4th International Workshop on Cryptographic Hardware and Embedded Systems (CHES 2002), LNCS, 2523, Berlin: Springer-Verlag, 2003, 454-469. |
[17] |
Y. Tian, G. L. Chen and J. Li,
A New Ultralightweight RFID Authentication Protocol with Permutation, IEEE Communications Letters, 16 (2012), 702-705.
|
[18] |
S. A. Weis, S. E. Sarma, R. L. Rivest and D. W. Engels, Security and privacy aspects of lowcost radio frequency identification systems, Proceedings of the 1st International Conference on Security in Pervasive Computing, LNCS, 2802, Berlin: Springer-Verlag, 2004, 719-724. |
[19] |
J. P. de Wet and S. A. van Aardt,
Traceability of locally Hamiltonian and locally traceable graphs, Discrete Mathematics and Theoretical Computer Science, 17 (2016), 245-262.
|





authentication key of each tag, used to authenticate a reader | |
private key of each tag in the group signature scheme | |
exclusive-OR of the Hash values of |
|
group public key | |
exclusive-OR of the other |
|
ID |
one tag's identity information |
MAC value of message |
|
concatenation of two data |
authentication key of each tag, used to authenticate a reader | |
private key of each tag in the group signature scheme | |
exclusive-OR of the Hash values of |
|
group public key | |
exclusive-OR of the other |
|
ID |
one tag's identity information |
MAC value of message |
|
concatenation of two data |
Mutual authentication |
Tag anonymity |
Message confidentiality |
Message integrity |
Message freshness |
|
The Protocol [13] | |||||
Our protocol |
Mutual authentication |
Tag anonymity |
Message confidentiality |
Message integrity |
Message freshness |
|
The Protocol [13] | |||||
Our protocol |
Tag's calculation |
Server's calculation |
Tag's storage |
Server's storage |
|
The protocol [13] | 0 | mSM+2 |
20 |
20( |
Our protocol | 82 |
( |
3260bytes | (42 |
Tag's calculation |
Server's calculation |
Tag's storage |
Server's storage |
|
The protocol [13] | 0 | mSM+2 |
20 |
20( |
Our protocol | 82 |
( |
3260bytes | (42 |
Pairing | Scalar multiplication | Hash operation |
3.16 | 0.79 | 0.0002 |
Pairing | Scalar multiplication | Hash operation |
3.16 | 0.79 | 0.0002 |
[1] |
Meenakshi Kansal, Ratna Dutta, Sourav Mukhopadhyay. Group signature from lattices preserving forward security in dynamic setting. Advances in Mathematics of Communications, 2020, 14 (4) : 535-553. doi: 10.3934/amc.2020027 |
[2] |
Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control and Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393 |
[3] |
Minvydas Ragulskis, Zenonas Navickas. Hash function construction based on time average moiré. Discrete and Continuous Dynamical Systems - B, 2007, 8 (4) : 1007-1020. doi: 10.3934/dcdsb.2007.8.1007 |
[4] |
Ke Gu, Xinying Dong, Linyu Wang. Efficient traceable ring signature scheme without pairings. Advances in Mathematics of Communications, 2020, 14 (2) : 207-232. doi: 10.3934/amc.2020016 |
[5] |
Philip Lafrance, Alfred Menezes. On the security of the WOTS-PRF signature scheme. Advances in Mathematics of Communications, 2019, 13 (1) : 185-193. doi: 10.3934/amc.2019012 |
[6] |
Sumit Kumar Debnath, Tanmay Choudhury, Pantelimon Stănică, Kunal Dey, Nibedita Kundu. Delegating signing rights in a multivariate proxy signature scheme. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021016 |
[7] |
D. R. Stinson. Unconditionally secure chaffing and winnowing with short authentication tags. Advances in Mathematics of Communications, 2007, 1 (2) : 269-280. doi: 10.3934/amc.2007.1.269 |
[8] |
Claude Carlet, Juan Carlos Ku-Cauich, Horacio Tapia-Recillas. Bent functions on a Galois ring and systematic authentication codes. Advances in Mathematics of Communications, 2012, 6 (2) : 249-258. doi: 10.3934/amc.2012.6.249 |
[9] |
Iris Anshel, Derek Atkins, Dorian Goldfeld, Paul E. Gunnells. Ironwood meta key agreement and authentication protocol. Advances in Mathematics of Communications, 2021, 15 (3) : 397-413. doi: 10.3934/amc.2020073 |
[10] |
M. B. Paterson, D. R. Stinson, R. Wei. Combinatorial batch codes. Advances in Mathematics of Communications, 2009, 3 (1) : 13-27. doi: 10.3934/amc.2009.3.13 |
[11] |
JiYoon Jung, Carl Mummert, Elizabeth Niese, Michael Schroeder. On erasure combinatorial batch codes. Advances in Mathematics of Communications, 2018, 12 (1) : 49-65. doi: 10.3934/amc.2018003 |
[12] |
Yuzhong Zhang, Chunsong Bai, Qingguo Bai, Jianteng Xu. Duplicating in batch scheduling. Journal of Industrial and Management Optimization, 2007, 3 (4) : 685-692. doi: 10.3934/jimo.2007.3.685 |
[13] |
Richard A. Brualdi, Kathleen P. Kiernan, Seth A. Meyer, Michael W. Schroeder. Combinatorial batch codes and transversal matroids. Advances in Mathematics of Communications, 2010, 4 (3) : 419-431. doi: 10.3934/amc.2010.4.419 |
[14] |
Volker Rehbock, Iztok Livk. Optimal control of a batch crystallization process. Journal of Industrial and Management Optimization, 2007, 3 (3) : 585-596. doi: 10.3934/jimo.2007.3.585 |
[15] |
Yang Lu, Quanling Zhang, Jiguo Li. An improved certificateless strong key-insulated signature scheme in the standard model. Advances in Mathematics of Communications, 2015, 9 (3) : 353-373. doi: 10.3934/amc.2015.9.353 |
[16] |
Jintai Ding, Zheng Zhang, Joshua Deaton. The singularity attack to the multivariate signature scheme HIMQ-3. Advances in Mathematics of Communications, 2021, 15 (1) : 65-72. doi: 10.3934/amc.2020043 |
[17] |
Fioralba Cakoni, Heejin Lee, Peter Monk, Yangwen Zhang. A spectral target signature for thin surfaces with higher order jump conditions. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022020 |
[18] |
Yunwen Liu, Longjiang Qu, Chao Li. New constructions of systematic authentication codes from three classes of cyclic codes. Advances in Mathematics of Communications, 2018, 12 (1) : 1-16. doi: 10.3934/amc.2018001 |
[19] |
Lutz Recke, Anatoly Samoilenko, Alexey Teplinsky, Viktor Tkachenko, Serhiy Yanchuk. Frequency locking of modulated waves. Discrete and Continuous Dynamical Systems, 2011, 31 (3) : 847-875. doi: 10.3934/dcds.2011.31.847 |
[20] |
Illés Horváth, Kristóf Attila Horváth, Péter Kovács, Miklós Telek. Mean-field analysis of a scaling MAC radio protocol. Journal of Industrial and Management Optimization, 2021, 17 (1) : 279-297. doi: 10.3934/jimo.2019111 |
2021 Impact Factor: 1.865
Tools
Metrics
Other articles
by authors
[Back to Top]