August & September  2019, 12(4&5): 1527-1534. doi: 10.3934/dcdss.2019105

A novel approach to improve the accuracy of the box dimension calculations: Applications to trabecular bone quality

1. 

University Centre of Defence at the Spanish Air Force Academy, MDE-UPCT, 30720 Santiago de la Ribera, Murcia, Spain

2. 

University of Murcia, Department of Dermatology, Stomatology, Radiology and Physical Medine, Morales Messeguer General Universitary Hospital, Avda. Marqus de los Velez, 30008 Murcia, Spain

* Corresponding author: Yolanda Guerrero-Sánchez

Received  August 2017 Revised  January 2018 Published  November 2018

Fund Project: The first author has been partially supported by Grants No. 19219/PI/14 from Fundación Séneca of Región de Murcia and No. MTM2015-64373-P from Spanish Ministry of Economy and Competitiveness.

Fractal dimension and specifically, box-counting dimension, is the main tool applied in many fields such as odontology to detect fractal patterns applied to the study of bone quality. However, the effective computation of such invariant has not been carried out accurately in literature. In this paper, we propose a novel approach to properly calculate the fractal dimension of a plane subset and illustrate it by analysing the box dimension of a trabecular bone through a computed tomography scan.

Citation: M. Fernández-Martínez, Yolanda Guerrero-Sánchez, Pía López-Jornet. A novel approach to improve the accuracy of the box dimension calculations: Applications to trabecular bone quality. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1527-1534. doi: 10.3934/dcdss.2019105
References:
[1]

A. Estrugo-DevesaJ. Segura-EgeaL. García-VicenteM. Schemel-SuárezA. Blanco-CarriónE. Jané-Salas and J. López-López, Correlation between mandibular bone density and skeletal bone density in a Catalonian postmenopausal popultion, Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 125 (2018), 495-502.   Google Scholar

[2]

M. Fernández-Martínez, A survey on fractal dimension for fractal structures, Applied Mathematics and Nonlinear Sciences, 2 (2016), 437-472.   Google Scholar

[3]

M. Fernández-Martínez and M. A. Sánchez-Granero, A new fractal dimension for curves based on fractal structures, Topology and its Applications, 203 (2016), 108-124.  doi: 10.1016/j.topol.2015.12.080.  Google Scholar

[4]

M. Fernández-Martínez and M. A. Sánchez-Granero, Calculating the fractal dimension in higher dimensional spaces, preprint. Google Scholar

[5]

M. Fernández-Martínez and M. A. Sánchez-Granero, Fractal dimension for fractal structures, Topology and Its Applications, 163 (2014), 93-111.  doi: 10.1016/j.topol.2013.10.010.  Google Scholar

[6]

M. Fernández-Martínez and M. A. Sánchez-Granero, How to calculate the Hausdorff dimension using fractal structures, Applied Mathematics and Computation, 264 (2015), 116-131.  doi: 10.1016/j.amc.2015.04.059.  Google Scholar

[7]

E. Jagelavičienė and R. Kubilius, The relationship between general osteoporosis of the organism and periodontal diseases, Medicina (Kaunas), 42 (2006), 613-618.   Google Scholar

[8]

A. Jordão CamargoE. Saito AritaM. C. Cortéz de Fernández and P. C. Aranha Watanabe, Comparison of Two Radiological Methods for Evaluation of Bone Density in Postmenopausal Women, International Journal of Morphology, 33 (2015), 732-736.   Google Scholar

[9]

A. N. LawA.-M. Bollen and S.-K. Chen, Detecting osteoporosis using dental radiographs: A comparison of four methods, The Journal of American Dental Association, 127 (1996), 1734-1742.   Google Scholar

[10]

P. L. LinP. W. HuangP. Y. Huang and H. C. Hsu, Alveolar bone-loss area localization in periodontitis radiographs based on threshold segmentation with a hybrid feature fused of intensity and the H-value of fractional Brownian motion model, Computer Methods and Programs in Biomedicine, 121 (2015), 117-126.   Google Scholar

[11]

F. Martínez-LópezM. A. Cabrerizo-Vílchez and R. Hidalgo-Álvarez, An improved method to estimate the fractal dimension of physical fractals based on the Hausdorff definition, Physica A: Statistical Mechanics and its Applications, 298 (2001), 387-399.   Google Scholar

[12]

K. R. PhippsB. K. S. ChanT. E. MaddenN. C. GeursM. S. ReddyC. E. Lewis and E. S. Orwoll, Longitudinal Study of Bone Density and Periodontal Disease in Men, Journal of Dental Research, 86 (2007), 1110-1114.   Google Scholar

[13]

E. SenerS. Cinarcik and B. Guniz Baksi, Use of fractal analysis for the discrimination of trabecular changes between individuals with healthy gingiva or moderate periodontitis, Journal of Periodontology, 86 (2015), 1364-1369.   Google Scholar

[14]

M. TezalJ. Wactawski-WendeS. G. GrossiA. W. HoR. Dunford and R. J. Genco, The Relationship Between Bone Mineral Density and Periodontitis in Postmenopausal Women, Journal of Periodontology, 71 (2000), 1492-1498.   Google Scholar

[15]

B. Tolga SuerZ. Yaman and B. Buyuksarac, Correlation of Fractal Dimension Values with Implant Insertion Torque and Resonance Frequency Values at Iimplant Recipient Sites, The International Journal of Oral & Maxillofacial Implants, 31 (2016), 55-62.   Google Scholar

[16]

S. X. Updike and H. Nowzari, Fractal analysis of dental radiographs to detect periodontitis-induced trabecular changes, Journal of Periodontal Research, 43 (2008), 658-664.   Google Scholar

[17]

A. YoshiharaY. SeidaN. Hanada and H. Miyazaki, A longitudinal study of the relationship between periodontal disease and bone mineral density in community-dwelling older adults, Journal of Clinical Periodontology, 31 (2004), 680-684.   Google Scholar

[18]

A. YoshiharaY. SeidaN. HanadaK. Nakashima and H. Miyazaki, The relationship between bone mineral density and the number of remaining teeth in community-dwelling older adults, Journal of Oral Rehabilitation, 32 (2005), 735-740.   Google Scholar

show all references

References:
[1]

A. Estrugo-DevesaJ. Segura-EgeaL. García-VicenteM. Schemel-SuárezA. Blanco-CarriónE. Jané-Salas and J. López-López, Correlation between mandibular bone density and skeletal bone density in a Catalonian postmenopausal popultion, Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 125 (2018), 495-502.   Google Scholar

[2]

M. Fernández-Martínez, A survey on fractal dimension for fractal structures, Applied Mathematics and Nonlinear Sciences, 2 (2016), 437-472.   Google Scholar

[3]

M. Fernández-Martínez and M. A. Sánchez-Granero, A new fractal dimension for curves based on fractal structures, Topology and its Applications, 203 (2016), 108-124.  doi: 10.1016/j.topol.2015.12.080.  Google Scholar

[4]

M. Fernández-Martínez and M. A. Sánchez-Granero, Calculating the fractal dimension in higher dimensional spaces, preprint. Google Scholar

[5]

M. Fernández-Martínez and M. A. Sánchez-Granero, Fractal dimension for fractal structures, Topology and Its Applications, 163 (2014), 93-111.  doi: 10.1016/j.topol.2013.10.010.  Google Scholar

[6]

M. Fernández-Martínez and M. A. Sánchez-Granero, How to calculate the Hausdorff dimension using fractal structures, Applied Mathematics and Computation, 264 (2015), 116-131.  doi: 10.1016/j.amc.2015.04.059.  Google Scholar

[7]

E. Jagelavičienė and R. Kubilius, The relationship between general osteoporosis of the organism and periodontal diseases, Medicina (Kaunas), 42 (2006), 613-618.   Google Scholar

[8]

A. Jordão CamargoE. Saito AritaM. C. Cortéz de Fernández and P. C. Aranha Watanabe, Comparison of Two Radiological Methods for Evaluation of Bone Density in Postmenopausal Women, International Journal of Morphology, 33 (2015), 732-736.   Google Scholar

[9]

A. N. LawA.-M. Bollen and S.-K. Chen, Detecting osteoporosis using dental radiographs: A comparison of four methods, The Journal of American Dental Association, 127 (1996), 1734-1742.   Google Scholar

[10]

P. L. LinP. W. HuangP. Y. Huang and H. C. Hsu, Alveolar bone-loss area localization in periodontitis radiographs based on threshold segmentation with a hybrid feature fused of intensity and the H-value of fractional Brownian motion model, Computer Methods and Programs in Biomedicine, 121 (2015), 117-126.   Google Scholar

[11]

F. Martínez-LópezM. A. Cabrerizo-Vílchez and R. Hidalgo-Álvarez, An improved method to estimate the fractal dimension of physical fractals based on the Hausdorff definition, Physica A: Statistical Mechanics and its Applications, 298 (2001), 387-399.   Google Scholar

[12]

K. R. PhippsB. K. S. ChanT. E. MaddenN. C. GeursM. S. ReddyC. E. Lewis and E. S. Orwoll, Longitudinal Study of Bone Density and Periodontal Disease in Men, Journal of Dental Research, 86 (2007), 1110-1114.   Google Scholar

[13]

E. SenerS. Cinarcik and B. Guniz Baksi, Use of fractal analysis for the discrimination of trabecular changes between individuals with healthy gingiva or moderate periodontitis, Journal of Periodontology, 86 (2015), 1364-1369.   Google Scholar

[14]

M. TezalJ. Wactawski-WendeS. G. GrossiA. W. HoR. Dunford and R. J. Genco, The Relationship Between Bone Mineral Density and Periodontitis in Postmenopausal Women, Journal of Periodontology, 71 (2000), 1492-1498.   Google Scholar

[15]

B. Tolga SuerZ. Yaman and B. Buyuksarac, Correlation of Fractal Dimension Values with Implant Insertion Torque and Resonance Frequency Values at Iimplant Recipient Sites, The International Journal of Oral & Maxillofacial Implants, 31 (2016), 55-62.   Google Scholar

[16]

S. X. Updike and H. Nowzari, Fractal analysis of dental radiographs to detect periodontitis-induced trabecular changes, Journal of Periodontal Research, 43 (2008), 658-664.   Google Scholar

[17]

A. YoshiharaY. SeidaN. Hanada and H. Miyazaki, A longitudinal study of the relationship between periodontal disease and bone mineral density in community-dwelling older adults, Journal of Clinical Periodontology, 31 (2004), 680-684.   Google Scholar

[18]

A. YoshiharaY. SeidaN. HanadaK. Nakashima and H. Miyazaki, The relationship between bone mineral density and the number of remaining teeth in community-dwelling older adults, Journal of Oral Rehabilitation, 32 (2005), 735-740.   Google Scholar

Figure 1.  First two levels, $\Gamma_1$ and $\Gamma_2$, of a (quite natural) fractal structure on the Sierpiński gasket. The elements in each covering are depicted in pale blue
Figure 2.  First two levels of the natural fractal structure on $[0, 1]\times [0, 1]$ as a Euclidean subset
Figure 3.  The two images above show the first two levels, $\Delta_1$ and $\Delta_2$, of a fractal structure induced by $\mathbf{\Gamma }$ on the image set of a Brownian motion, where $\mathbf{\Gamma }$ is the natural fractal structure on $[0, 1]$
Figure 4.  The two images above depict the construction of the first two levels of the Hilbert's plane-filling curve
Figure 5.  CT scan from a periodontitis patient (left) and detailed view of a trabecular bone from that scan where it can be identified the fractal nature of periodontal tissues
[1]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

[2]

Shanshan Chen, Junping Shi, Guohong Zhang. Spatial pattern formation in activator-inhibitor models with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 1843-1866. doi: 10.3934/dcdsb.2020042

[3]

Israa Mohammed Khudher, Yahya Ismail Ibrahim, Suhaib Abduljabbar Altamir. Individual biometrics pattern based artificial image analysis techniques. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2020056

[4]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[5]

Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009

[6]

Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190

[7]

Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 307-320. doi: 10.3934/naco.2020027

[8]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

[9]

Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199

[10]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (107)
  • HTML views (441)
  • Cited by (1)

[Back to Top]