We prove the existence of a minimizer for a nonlinearly elastic shell model which coincides to within the first order with respect to small thickness and change of metric and curvature energies with the Koiter nonlinear shell model.
Citation: |
S. Anicic
, Polyconvexity and existence theorem for nonlinearly elastic shells, J. Elasticity, 132 (2018)
, 161-173.
doi: 10.1007/s10659-017-9664-z.![]() ![]() ![]() |
|
S. Anicic, A shell model allowing folds, in Numerical Mathematics and Advanced Applications, Springer Italia, (2003), 317-326.
![]() ![]() |
|
S. Anicic,
From the Exact Kirchhoff-Love Shell Model to a Thin Shell Model and a Folded Shell Model, Ph.D thesis, Joseph Fourier University, France, 2001.
![]() |
|
R. Bunoiu
, Ph.-G. Ciarlet
and C. Mardare
, Existence theorem for a nonlinear elliptic shell model, J. Elliptic Parabol. Equ., 1 (2015)
, 31-48.
doi: 10.1007/BF03377366.![]() ![]() ![]() |
|
Ph.-G. Ciarlet
and C. Mardare
, A nonlinear shell model of Koiter's type, C. R. Math. Acad. Sci. Paris, 356 (2018)
, 227-234.
doi: 10.1016/j.crma.2017.12.005.![]() ![]() ![]() |
|
Ph.-G. Ciarlet
and C. Mardare
, A mathematical model of Koiter's type for a nonlinearly elastic "almost spherical" shell, C. R. Math. Acad. Sci. Paris, 354 (2016)
, 1241-1247.
doi: 10.1016/j.crma.2016.10.011.![]() ![]() ![]() |
|
W. T. Koiter On the nonlinear theory of thin elastic shells. Ⅰ, Ⅱ, Ⅲ, Nederl. Akad. Wetensch. Proc. Ser. B, 69 (1966), 1-17, 18-32, 33-54.
![]() ![]() |